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PLAN

Two goals:
I First, I would like to show that combinatorics provides a good

example of what a misunderstanding in mathematics can
be, and may thus cast some light on both mathematical
understanding and mathematical objectivity.

I This point comes close to the second goal of my talk, which is
to reconsider the “identity problem” faced by the structuralist
interpretation of mathematics.



Ante rem structuralism

According to Stewart Shapiro’s ante rem structuralism,
mathematics studies structures, conceived of as certain
configurations of pure relata.

In that view, the constituents of a structure do not have any
individuality, since each of them is entirely characterized by the
bundle of relations which connect it to all the other
constituents.

In other words, a mathematical object is but a “place” within a
structure. “The number 2, for example, is no more and no less
than the second position in the natural-number structure.”



A given collection of individual objects, with relations between
them, which exemplifies a certain structure, is what Shapiro calls a
system.

A structure is “the abstract form of a system,” a system is an
instance of a structure.

However, a structure is not the mere result of its abstraction from
the diverse systems that instantiate it.

Indeed, ante rem structuralism, as opposed to in re structuralism,
takes the places of a structure to be full-fledged objects in their
own right, as opposed to mere “offices.”

As a consequence, the places-as-objects of a given structure make
up a system which instantiates itself as a structure.



The identity problem

In the perspective of ante rem structuralism, a mathematical
object, as a place in a structure, cannot be individuated beyond its
structural properties within that structure.

This precipitates the “identity problem,” as it has been brought up
by Jukka Keränen.

This is the problem of explaining how two distinct objects of the
same structure can have exactly the same structural properties and
yet be distinct.

There are structures in which two distinct places are still
structurally indistinguishable (despite being distinct).

Very elementary examples of that situation are the points of the
geometric plane, or the conjugate complex numbers (i.e., a+ ib
and a− ib).

In fact, any structure with a nontrivial automorphism is an instance
of the identity problem.



How to conceive of two distinct yet structurally indiscernible
places of the same structure?

Shapiro points out that it is always possible to differentiate two
given distinct objects. To be specific, the pair 〈i ,−i〉 satisfies the
formula x + y = 0, whereas 〈i , i〉. does not. This suffices to
vindicate the fact that i and −i are distinct.

In Keränen’s view, however, any theory of a certain kind of objects
has to provide one with a general individuation criterion for any
object. those objects.



Keränen: “[According to ante rem structuralism], whenever two
distinct elements in a system have the same intra-systemic
relational properties, [. . . ] they occupy the same place of the
corresponding structure.”

But this assumption, according to Shapiro, is wrong: The
non-coincidence of two places in a structure is shown by the
non-coincidence of the two items that occupy those places in the
system that is the structure.

The distinctness of two distinct, yet otherwise indistinguishable
constituents of a structure constitutes a brute fact.

Leitgeb & Ladyman’s example, taken from graph theory:

e e e e
As Shapiro puts it, “we know what identity is.”



Combinatorics

There is a privileged domain in mathematics which calls for its
consideration —a domain where permutations and symmetries are
brought to the fore, namely combinatorics.

Studying the very basic framework of combinatorics should give one
the insight needed to understand how automorphisms and
symmetries work, and thus how to reconsider the Keränen vs
Shapiro controversy.

This will allow us to develop the second thread of this talk:
misunderstanding in mathematics.



Suppose that three items a, b, c are given, and let’s consider the
permutation that swaps a and b while leaving c unchanged. This is
a very elementary mathematical scenario. But is it so simple a
thing to grasp?

The set composed of a, b and c is not altered by the permutation
under consideration: This permutation is, so to speak, a mere fancy
of the mind. Yet we cannot help but picture a, b and c spatially,
assigning to those objects different respective positions.
Doing that, we really could have put originally a at the
position that is actually occupied by b, and put originally b at
a’s actual position. (Or: We could have named a, ‘b’ —and
vice versa.)
This would have changed nothing.

So a permutation refers to a setting which is itself defined only up
to any arbitrary permutation of the original positions (or the
names) of a, b and c .



Otherwise put:

The representation of a permutation involves arbitrary choices
which make it appear as an invariant under typographical
permutations.

So, to really understand how to represent a permutation, one
ought to have some prior understanding of some permutations.

There is no vicious circle here, because the typographical
permutations (of the labellings of the items on which the
permutation under consideration acts) or the spatial permutations
(of the initial positions of the items, as one pictures them) are not
permutations in the proper (mathematical) sense.

Still things turn out to be trickier than one could expect them
to be.



A permutation is a one-to-one mapping of a set to itself. One
usually writes a permutation by using schematic letters. For
instance, the permutation on a three-object set which exchanges
the two first ones and leaves the third one untouched is usually
written: (

a b c
b a c

)
.

It is obvious that the choice of {a, b, c} instead, say, {α, β, γ}
or {a1, a2, a3}, is completely immaterial.

This does not mean, however, that one is considering the set
{a, b, c} up to a permutation “replacing” a with α, b with β,
and c with γ. Indeed, keeping track of permutations precisely
presupposes that letters have been settled once and for all.

The letters a, b and c are variable parameters to the extent that
they are arbitrary, but —of course— they are not variable in the
sense of the variation that they make it possible to represent.



Threefold arbitrariness attached to any representation of a
permutation:

I the arbitrariness of the underlying set:(
a b c
b a c

)
≡

(
α β γ
β α γ

)
.

I the arbitrariness of the original arrangement of the members:(
a b c
b a c

)
=

(
b a c
a b c

)
.

I the arbitrariness of the labelling of the members of that set:(
a b c
b a c

)
∼

(
a b c
c b a

)
.

The two permutations are said to be conjugate.



I am mainly interested in the latter —the arbitrariness of the
labelling: (

a b c
b a c

)
∼

(
a b c
c b a

)
.

It looks like what the first permutation does with b is what the
other does with c , and vice versa. It is as if both permutations were
doing exactly the same thing, except that the labels of b and c
have been swapped. And well, after all the object called ‘b’ could
have been called ‘c ’, and conversely.

In reality, it makes absolutely no sense to mark off the objects from
their names. We do not have access to a otherwise than by its
name. The very distinction between objects and names is
confused.



So names do not matter.

Strictly speaking, however, the group of all permutations on a set
X with n elements, written Sn, is defined as the group of all
permutations on the particular set {1, 2, . . . , n}.
The identification is natural, since the group of all permutations
SX on any n-element set X is isomorphic to Sn.

The isomorphism is not canonical. And selecting one precisely
amounts to selecting a certain numbering of X .

But in the case X = {1, 2, 3, . . . , n}, the numbering is trivial, i.e.,
amounts to taking each number as its own numeral:
1 = 1, 2 = 2, . . . , n = n.



So, in the usual representation of a permutation, the labels are the
numerals directly corresponding to the numbers. The numbers act
as their own numerals.

But, then, what happens if the numbers are confused with
numerals?

It is not un-understandable to understand numerals 1, 2, 3,
. . . as indices of their respective canonical ranks, rather than the
underlying individual objects that these numerals are supposed to
stand for throughout the permutation.



Let π the following permutation:(
1 2 3 4
4 3 1 2

)
.

Here 1, 2, 3 et 4 are not ranks, but individual objects, whose orbits
are considered as π is iterated:

1 2 3 4
4 3 1 2
2 1 4 3
3 4 2 1
1 2 3 4 .



Now let’s imagine the following heterodox interpretation, let’s call
it Dummy’s interpretation.

Dummy understands 1, 2, 3, 4 as ranks rather than as objects, and
accordingly carries out the iteration of π in this way:

R1 = 1 2 3 4 = 1.1 2.1 3.1 4.1

R2 = 4 3 1 2 = 1.2 2.2 3.2 4.2 .

The second row R2 is understood as reindexing the ranks:
4 becomes the “new” 1, so to speak, that is, the “new” number 1
position. Similarly 3 becomes the “new” 2, and so on.
In this perspective, 1 is not only 1, but first and foremost the index
of the first position in the current row, and the permutation is
viewed as a perturbation of the ranks in reference to {1, 2, . . . , n}.



π =

(
1 2 3 4
4 3 1 2

)
According to Dummy’s reading, the calculation of the third
row R3 for π goes that way:

“4 becomes 2, but since 2 now is 3 (because 2.2 = 3), 4
finally lands on 3. So 3 will be the first numeral on R3.”

The basic principle of that heterodox interpretation is that the 4 on
the first row R1 becomes 2 on the second row R2, but 2 as
understood precisely according to the new code set by R2, namely
as 2.2 = 3. In the same way, 3 becomes 1 with 1.2 = 4.

One finally gets:

R3 = 3 4 2 1 = 1.3 2.3 3.3 4.3



To sum up, the correct iteration of π of course is

R1 1 2 3 4
R2 4 3 1 2
R3 2 1 4 3 ,

but in Dummy’s interpretation, the iteration of π becomes

R1 1 2 3 4
R2 4 3 1 2
R3 3 4 2 1 .

In other words, Dummy takes the numbers on which the
permutation acts to be floating ranks, whose counterpart is reset
at each step.



Let’s give another example of Dummy’s misinterpretation. The

correct iteration of the cycle (12345) =
(

1 2 3 4 5
2 3 4 5 1

)
is:

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4
1 2 3 4 5 .

The first three rows, in Dummy’s version, are on the contrary:

1 2 3 4 5
2 3 4 5 1
4 5 1 2 3 .

Indeed, the first item in the third row is not 3, but 3 as a rank,
i.e., as the holder of the third position as determined in the second
row, namely 4.



Dummy’s heterodox interpretation understands numerals as ranks
of positions in the current row.
It also supposes, however, to take numerals to remain
self-identical from one row to the next one.
Indeed, remember Dummy’s calculation of the third row R3 of
(12345):

1 2 3 4 5
2 3 4 5 1
4

“2 becomes 3, but since 3 now is 4 (because 3.2 = 4), 2
finally lands on 4.”

In this explanation, 4, which holds the third position in row R2,
remains what it is, namely the numeral 4. In the shift from R2 to
R3, 4 stays a fixed item, whereas 3 is bestowed the status of
floating rank, moving from 3.1 = 3 to 3.2 = 4.

This is a double standard that can be objected to.



A more consistent heterodoxical interpretation of permutations
consists in identifying as systematically as possible any numeral
with a floating rank. Any substitutional matrix n→ m then reads
as a rank updating, which requires rewriting the updated matrix
of the substitution at each step. The iteration of the cycle
(12345) then goes:

1 2 3 4 5
2 3 4 5 1
4 5 1 2 3
3 4 5 1 2
1 2 3 4 5

= 1′ 2′ 3′ 4′ 5′
−→= 3′ 4′ 5′ 1′ 2′
←−= 2′ 3′ 4′ 5′ 1′

= ← ← ← ← ←

= 1′′ 2′′ 3′′ 4′′ 5′′
−→= 5′′ 1′′ 2′′ 3′′ 4′′

= 3′′ 4′′ 5′′ 1′′ 2′′ .

For instance, this is how the first numeral in the fourth row is
determined:

4 is 3′. But 3′ becomes 5′, i.e., the holder of the 5th
position in the row, namely 2′, which gives, if one gets
back to the first five-column group, the numeral 3.

This calculation is then itself recorded in a third five-column group,
as a basis for the calculation of the fifth row.



Obviously, Dummy’s heterodox interpretation is wrong (as is its
radicalized version).

Indeed, it is based on a confusion of numbers as objects (as
when one says that 4 “becomes” 2) and of numbers as contextual
ranks in the row of their occurrences (as when one says that 3 has
become “the new 2” in the context of the second row of π).

But the point is: Wrong as it may be, Dummy’s interpretation is
neither trivial nor nonsensical.

This shows that mathematical understanding relies on a correct
understanding of how mathematical labellings work.



The permutations of a set are as many symmetries of that set but
require, for their handling, the benchmark against which they can
appear as symmetries. This benchmark is provided by an arbitrary
indexing which acts as a rigidifying device.
This can be generalized.

Labellings, numberings, parameterizations or distinguished elements
of various kinds appear to be pervasive throughout mathematics, as
local devices to “set ideas.”

Let’s call settings all devices of that sort.

Settings are actually so pervasive throughout mathematics and so
important to grasp that no satisfying account of mathematical
objectivity can be sustained without giving them full attention.



There are numerous examples of settings in mathematics.

The writing of a permutation as a two-row matrix is a basic
example of what a setting is: It displays a set together with an
implicit indexing of it (corresponding to the occurrence ranks of the
items in the top row).

Other examples:
I the choice of an origin O for an affine space E , in geometry,

leading to the abstract vector space V underlying E
I the arbitrary choice of a base point to define the fundamental

group of a path-connected topological space
I the choice of the particular “atlas” of a differentiable manifold
I the “expansion” of a structure in the model-theoretic sense.

(An expansion, however, is less a setting than the
internalization of a setting from the semantical metalanguage
into the object language.)

Settings correspond to all the mathematically relevant aspects
of arbitrary choices in mathematics.



Certain mathematical settings are themselves mathematically
formalized as such.

In particular, the choice of an arbitrary origin for the affine space is
fully captured by the important mathematical notion of torsor.

Given a group G , a G -torsor is a space X on which G acts freely
and transitively.

That definition means that X looks exactly like G , except for the
fact that there is no distinguished identity element in X .

For instance, the affine space An is a torsor for the corresponding
vector space, that is, for the group of translations in Rn.

Other example: the set of orthonormal frames is an O(n)-torsor.



A torsor is a group whose identity element is not identified any
more: Any element can be chosen to be the identity element.

Conversely, a group G is canonically isomorphic with any of its
G -torsors TG , but only as soon as an element of TG has been
distinguished to act as the identity:

Until the choice of such distinguished element has been made, TG
is virtually isomorphic to G , but not canonically so.

For instance, the affine space An equipped with an origin is
canonically isomorphic to the group of translations in Rn, but An as
such is deprived of any group structure.
It is customary to define vectors of R2 on the basis of the Euclidean
plane.
The recovery of a group from one of its torsors is an important
example of mathematical setting.



John Baez:
Here’s a famous example: the set of orthonormal frames
at some point of a n-dimensional Riemannian manifold is
not the group O(n), but it’s an O(n)-torsor. You can take
any frame and rotate it by an element of O(n); you can
take two frames and work out their “difference”, which is
an element of O(n) – but the frames don’t form a group.
We can pretend the frames are the group O(n) – but only
after we arbitrarily choose one frame and decree it to be
the identity. Then every other frame is a rotated version
of this one, so we can pretend it is a rotation!

Back and forth: frames become rotations, rotations are recaptured
from frames (as vectors are from points).



Each setting involves arbitrary choices, and so in this sense is
“variable” to the extent that it could have been different (without
changing the structure that it produces).

But this variability remains only virtual: Once set, a setting cannot
change. Otherwise confusions follow (as we have seen).

The confusion of the virtual variability of the parameters of a
setting with the actual variability of the objects presented by
that setting is the exact root of Dummy’s confusion.

The tentation to identify two conjugate permutations

—such as
(

a b c
b a c

)
and

(
a b c
c b a

)
—

illustrates the converse confusion of objects with parameters.



Think also of how the layman gets easily in a muddle about
composed percentages or base conversions:

If one tries to calculate 30% of 60%, should one consider
that 30%, in that context, actually means 30 per 60,
since 30% is meant to apply, not to 100, but to 60%?

The confusion has to do with the fact that 100 is just an arbitrary
unit to represent ratios and should not be confused with an actual
quantity. It is a parameter built into the setting of percentages,
instead of an object represented in that setting.



A setting is what endows a structure with a certain angle, so
that the structure becomes rigid (i.e., deprived of any nontrivial
automorphism). A setting kills all parasitic symmetries.

A setting is the the coordinatization of a mathematical
configuration so as to make it mathematically tractable.

Settings are not mere auxiliary devices: They are part of the very
objects that they make it possible to manipulate.

Claim: Most mathematical structures are not accessible (= both
describable and open to further constructions) without the medium
of a particular setting.



Let’s call mathematical presentation a mathematical structure as
intended through a particular setting.

For instance, the group S3 is a mathematical structure for which a
relevant presentation is a three-element set X = {a, b, c}, together
with a certain numbering j : {1, 2, 3} → X of its elements.

The case X = {1, 2, 3}, j = id is a limit case, still it is a case of
mathematical presentation.



Back to the identity problem

A presentation is neither the structure itself, “just as it is,” nor a
mere particular system instantiating that structure.

A mathematical presentation is not a structure: Its labelling is
not canonical and is the tool, not the target of the investigation of
the structure.

A mathematical presentation is not a mere system either: If
two different settings of the same structure were systems, they
precisely could not differ at all.

Three-pronged organization of mathematics: Structures,
presentations and systems are irreducible to each other, and equally
needed to account for mathematical knowledge and mathematical
objectivity.



Case study of graph theory

My claim: An unlabelled graph always comes from neutralizing a
pre-labelling of the graph (a particular setting of it).

This pre-labelling remains latent despite its neutralization, since it
actually underpins its neutralization: The item called ‘b’ could have
been called ‘c ’, but how to understand this without first giving
names?

In a nutshell: Labelled graphs do not come from unlabelled
graphs, rather unlabelled graphs come from pre-labelled graphs.



Striking example: Anton Dochtermann, “Hom complexes and
homotopy theory in the category of graphs” (2009).

A vertex a of a graph G is said to dominate another vertex b of G
if all G -neighbors of b are G -neighbors of a.
The operation of erasing a dominant vertex of G is called a folding
of G .
The converse operation of adding a dominant vertex is called an
unfolding of G .
A graph G is reducible to a graph G ′ iff G ′ can be obtained from G
by a sequence of foldings and unfoldings.



Now let’s consider the following graph G :
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5

Since 3 dominates 4, 4 can be erased. Since 2 dominates 5, 5 can
be likewise erased. The vertices 1 and then 2 can be successively
erased for the same reason. The graph G appears in the end to be
reducible to the single looped vertex 3.
However, G is not reducible to the single looped vertex 4, despite
the looped vertices 3 and 4 being rigorously isomorphic, even
when considered within G .

This shows how the individuality of certain components of a graph
(here, 3) needs sometimes to be taken into account.



Back to the Keränen vs Shapiro controversy:

I Shapiro thinks that a presentation still is the
corresponding structure.
At some point of his discussion with Keränen, Shapiro
envisages the adjunction of a linear order to a structure S, so
as to individualize all the places of S. He describes this linear
ordering as an “enrichment” of S.
But the “enriched structure” is the same structure as S
(otherwise, it would be another structure, and we would not
speak of the intended structure any more). So in fact Shapiro
makes it appear as though a setting were internal to the
structure, as though a structure gave by itself the resources to
distinguish distinct items in it.

I On the contrary, Keränen thinks that a presentation is
already a system: Endowing a structure with a setting suffices
to turn it into a mere particular instance of that structure.
So considering the structure itself requires to get rid of any
means to distinguish numerically distinct items.



Shapiro confuses presentations with structures, while Keränen
confuses them with systems.
As a result, the identity problem has led to an unending debate.

The mistake shared by both Shapiro and Keränen is to fail to
distinguish between structures, systems and presentations.

(That being said, the distinction between structures and
presentations is a relative one: In some cases, a structure may
appear to be a presentation w.r.t some more abstract structure.)



Solution to the identity problem

As soon as the intermediate level of settings and presentations is
taken seriously, the identity problem dissolves: Any nontrivial
automorphism of a given structure actually is an isomorphism
between two (rigid) presentations of that structure, and can be
introduced only as such.

Symmetries do exist, but their introduction presupposes the very
distinction of the items that they make indiscernible.
This distinction is a distinction within a presentation: for instance,
between i and −i within 〈C, i ,−i〉, and, consecutively, a distinction
between two settings (between 〈C, i ,−i〉 and 〈C,−i , i〉 (the latter
referring to the former).

Since the chosen presentation presents the structure C itself, this
solution to the identity problem is compatible with structuralism.

But this solution comes at a cost: the cost of acknowledging that,
in many cases, a mathematical structure is not accessible “as it
is.”



Natural question: Since presentations are not structures, what is
an isomorphism between presentations?

Answer: Isomorphisms between presentations are presented
isomorphisms, i.e., isomorphisms in the usual sense.

Indeed, isomorphisms always implicitly refer to the choice of
particular settings: How, for instance, to define an isomorphism
between R[X ]/(X 2 + 1) and R+ iR without mentioning
distinguished elements X and i?

Admittedly, in certain cases the mere existence of an isomorphism
suffices (“Two isomorphic sets have the same cardinality”).
But in the other cases, the isomorphism needs to be specified
(important example: Whitehead’s Theorem).



If one does not distinguish between structures and presentations,
then any isomorphism between two structures shows, by its very
existence, that the two structures actually are identical, so that
they cannot really be said to be merely isomorphic.
This is but a variant of the identity problem.

On the contrary, if one does distinguish between structures and
presentations, then any isomorphism between two presentations
simply shows that the latter actually are two different presentations
of a single structure.

Most automorphisms are isomorphisms between two presentations,
whose respective underlying structures can then be considered
—only derivatively to that isomorphism— as corresponding to a
single structure.

Thus, the notion of presentation-isomorphism is in fact more
primitive and more robust than the notion of
structure-isomorphism.



To sum up

The identity problem confronts the realist structuralist with the fact
that an object seems to be more than a place in a structure,
namely a place plus something that individualizes it within its
indiscernibility class.
This “something more” is nothing but a setting.

A setting is not part of the corresponding structure itself, yet it is
not a merely psychological apparatus: It is really part of the
structure, to the extent that it can be manipulated and analyzed.

Settings and presentations do not boil down to sub-mathematical
conditions of concrete mathematical activity, such as the actual
drawing compared to the geometrical theorem. When they occur,
they are integral to mathematical understanding and to
mathematical objectivity.



Permutations, graphs, mathematical objects in general have to be
considered through the actual ways in which only it becomes
possible to grasp and manipulate them.

The epistemic handleability conditions of mathematical objects
should be built into mathematical objectivity.

Settings are precisely those parameterizing devices without whose
mediation an intended structure, in many cases, at least, cannot
be reached, i.e., introduced and cognitively handled.



Understanding (at least some) mathematical
misunderstandings

Our main example has been Dummy’s misunderstanding.

This misunderstanding follows a pattern: In most cases, the
misunderstander is not aware of the distinction to be made between
the parameters and the targets of a particular setting, since no
setting has been explicitly introduced in the first place.

And the mathematician is unable to understand the
misunderstander’s confusion, since the grasp of the setting is a
pre-condition to having any mathematical question to ask to begin
with.

The misunderstanding of mathematical misunderstandings is a
serious shortcoming, not only for any philosophy purporting to
account for mathematical practice, but also for any philosophy
purporting to account for mathematical objectivity.



Shapiro’s ontological platonism implies to dismiss the epistemic
conditions that make it possible to handle mathematical objects.

But epistemology strikes back, in the form of the identity problem.

The identity problem actually is the symptom of something more
general, which explains its being analogous to Benacerraf’s
dilemma.
One indication of the analogy is the common stress put on singular
terms by Benacerraf’s platonist and by Shapiro.

Getting back to Benacerraf’s “Mathematical truth:” The epistemic
horn is the wrong thesis that mathematical presentations do not
present anything;
The semantic horn —or ante rem structuralism— is the wrong
thesis that presentations are mere artefacts as opposed to the
structures “in themselves.”



The common root of both puzzles (Benacerraf’s dilemma, the
identity problem) is the uncritical acknowledgement of the surface
grammar of mathematical language and, accordingly, the myth of
the simple intuitability of mathematical items “just as they
are,” were they structures (to the platonist) or signs (to the
formalist).

The spectrum of mathematical presentations is hardly amenable to
a single kind, but a mathematical presentation always relies
ultimately on the use of notations in an environment that shows
how shifting from a notational system to another would be possible
but incidental to what is at stake.

The knowledge of a mathematical presentation is not a simple
intuition, but a double understanding: that both of a setting and
of the possible reparameterization of it (without anything relevant
being changed).



A presented structure is the abstract form of all its possible
instances, whereas it is the invariant of all its possible
presentations.

Anything established about the presentation of a structure is true
of that structure; The same, of course, does not hold for a system.

This is in particular why, once again, the connection between a
structure and any of its presentations is something entirely different
from the connection between a structure and any of its instances.



Unearthing a presentational tradition

The concept of presentation has both a mathematical side and a
philosophical side.

WARNING. One can trace back each side to particular precedents,
but those precedents broaden the concept of presentation toward
the (unsufficiently specific) notion of “way of defining” a
mathematical object.

So there is a tradition to unearth, but this tradition will then have
to be delineated as sharply as possible, and refined so as to
illustrate the concept of presentation instead of some other too
broad notion. This task goes beyond the scope of this talk.

Mathematical side:
I all systems of parameterization already discussed
I the presentation of a group:

[a, an = 1] = {ak : k ∈ N}/(an) is (a presentation of) the
cyclic group Z/nZ.

I the projective resolution of a module.



Philosophical side:
I Brentano: “Every intentional experience is either a

presentation (Vorstellung) or is founded upon a presentation.”
I Husserl, Fifth Logical Investigation: Husserl objects to the idea

that, underlying every consciousness, there are acts of a special
kind which merely present objects as the content for other,
higher-order acts of consciousness.

I Frege: The very phrase “mode of presentation” [Art des
Gegebenseins] is mentioned by Frege in the context of the
distinction that he drew between sense and denotation, in order
to account for the nontrivial nature of mathematical identities.



Conclusion (1/2)

Main points and advantages of a presentational perspective:
1. Mathematical settings and presentations are essential

components of both mathematical knowledge and
mathematical objectivity.

2. The “identity problem” stems from the confusion of
mathematical presentations with either structures or systems,
and on the contrary is solved by the corresponding distinctions.

3. The solution also applies to Benacerraf’s dilemma.
4. Mathematical understanding relies in particular, in many cases,

on a correct understanding of the behavior of mathematical
settings. This understanding is a double understanding, not a
simple intuition (whatever its object may be).



Conclusion (2/2)

5. Mathematical understanding should be understood so as to
make it possible to understand mathematical
misunderstandings. (Dummy is not a freak.) This is what a
presentational account of mathematical knowledge endeavors
to do.

6. A presentational account aims to ensure the unity of
mathematical knowledge and mathematical objectivity as
being something more than a fortunate match.

7. A presentational perspective simply gathers many suggestions.
But it maybe has the benefit of trying to bring together
philosophy of mathematical practice, “classical” philosophy of
mathematics, and maybe general philosophy.


