On the
information
contained in
representations
David Waszek

On the information contained in representations

David Waszek

Université Paris I Panthéon-Sorbonne, IHPST.
November 3, 2016

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive"
patterns
More complex patterns
Patterns in

formulas

Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Barwise and Etchemendy (1991): "Valid deductive inference is often described as the extraction or making explicit of information that is only implicit in information already obtained. ... But of course language is just one of the many forms in which information can be couched. Visual images, whether in the form of geometrical diagrams, maps, graphs, or visual scenes of real-world situations, are other forms."

David Waszek

Introduction:

Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Barwise and Etchemendy (1991): "Valid deductive inference is often described as the extraction or making explicit of information that is only implicit in information already obtained. ... But of course language is just one of the many forms in which information can be couched. Visual images, whether in the form of geometrical diagrams, maps, graphs, or visual scenes of real-world situations, are other forms."

Diagrams carry information.

David Waszek

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive"
patterns
More complex
patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Barwise and Etchemendy (1991): "Valid deductive inference is often described as the extraction or making explicit of information that is only implicit in information already obtained. ... But of course language is just one of the many forms in which information can be couched. Visual images, whether in the form of geometrical diagrams, maps, graphs, or visual scenes of real-world situations, are other forms."

Diagrams carry information. If we clarify that information, we can understand how diagrams are used; in particular, how they can support valid reasoning.

David Waszek

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Barwise and Etchemendy (1991): "Valid deductive inference is often described as the extraction or making explicit of information that is only implicit in information already obtained. ... But of course language is just one of the many forms in which information can be couched. Visual images, whether in the form of geometrical diagrams, maps, graphs, or visual scenes of real-world situations, are other forms."

Diagrams carry information. If we clarify that information, we can understand how diagrams are used; in particular, how they can support valid reasoning. But not only.

David Waszek

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Barwise and Etchemendy (1991): "Valid deductive inference is often described as the extraction or making explicit of information that is only implicit in information already obtained. ... But of course language is just one of the many forms in which information can be couched. Visual images, whether in the form of geometrical diagrams, maps, graphs, or visual scenes of real-world situations, are other forms."

Diagrams carry information. If we clarify that information, we can understand how diagrams are used; in particular, how they can support valid reasoning. But not only. B\&E often write about problem-solving (e.g. in GRE-style exercices).

Introduction: Barwise and Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Barwise and Etchemendy (1991): "Valid deductive inference is often described as the extraction or making explicit of information that is only implicit in information already obtained. ... But of course language is just one of the many forms in which information can be couched. Visual images, whether in the form of geometrical diagrams, maps, graphs, or visual scenes of real-world situations, are other forms."

Diagrams carry information. If we clarify that information, we can understand how diagrams are used; in particular, how they can support valid reasoning. But not only. B\&E often write about problem-solving (e.g. in GRE-style exercices).

My question: To what extent can B\&E's informational view of representations account for mathematical practice, including discovery?

Introduction:
Barwise and Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

I. What is the information in a representation?

A clarification of the work of $B \& E$ and their students

On the information contained in representations

David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the
information
"contained in" a
representation?
II. The problem of patterns
"Conjunctive"
patterns
More complex
patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations
I. What is the information in a representation?

A clarification of the work of B\&E and their students
On the
information
contained in
representations

If one looks carefully inside all the systems produced by Barwise \& Etchemendy's school, one always finds that at some point(s), diagrams are associated with sets of sentences or propositions.

David Waszek

```
Introduction:
Barwise and
Etchemendy's
program
```

1. A clarification:
What is the
information
"contained in" a
representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations
I. What is the information in a representation?

A clarification of the work of $B \& E$ and their students
On the
information
contained in
representations

If one looks carefully inside all the systems produced by Barwise \& Etchemendy's school, one always finds that at some point(s), diagrams are associated with sets of sentences or propositions. These sets serve two distinct purposes:

David Waszek

Introduction:
 Barwise and
 Etchemendy's program

1. A clarification: What is the
information
"contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex
patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations
I. What is the information in a representation?

A clarification of the work of $B \& E$ and their students

If one looks carefully inside all the systems produced by Barwise \& Etchemendy's school, one always finds that at some point(s), diagrams are associated with sets of sentences or propositions. These sets serve two distinct purposes:

- To define the models of the diagrams, that is, their "semantic content" in a more usual sense of the expression

On the
information
contained in
representations
David Waszek

Introduction:
 Barwise and
 Etchemendy's program

I. A clarification: What is the
information
"contained in" a
representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations
I. What is the information in a representation?

A clarification of the work of $B \& E$ and their students

If one looks carefully inside all the systems produced by Barwise \& Etchemendy's school, one always finds that at some point(s), diagrams are associated with sets of sentences or propositions. These sets serve two distinct purposes:

- To define the models of the diagrams, that is, their "semantic content" in a more usual sense of the expression (these models are then used to define logical consequence between diagrams, or between diagrams and sentences);

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the
information
"contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations
I. What is the information in a representation? A clarification of the work of $B \& E$ and their students

If one looks carefully inside all the systems produced by Barwise \& Etchemendy's school, one always finds that at some point(s), diagrams are associated with sets of sentences or propositions. These sets serve two distinct purposes:

- To define the models of the diagrams, that is, their "semantic content" in a more usual sense of the expression (these models are then used to define logical consequence between diagrams, or between diagrams and sentences);
- To define what one can infer by observation from the diagram (in heterogeneous systems), for instance via a syntactic "Observe" rule
I. A clarification: What is the
information
"contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations
I. What is the information in a representation? A clarification of the work of $B \& E$ and their students

If one looks carefully inside all the systems produced by Barwise \& Etchemendy's school, one always finds that at some point(s), diagrams are associated with sets of sentences or propositions. These sets serve two distinct purposes:

- To define the models of the diagrams, that is, their "semantic content" in a more usual sense of the expression (these models are then used to define logical consequence between diagrams, or between diagrams and sentences);
- To define what one can infer by observation from the diagram (in heterogeneous systems), for instance via a syntactic "Observe" rule (this can be thought of as the information explicitly available in the representation).

Introduction:
Barwise and Etchemendy's program
I. A clarification: What is the
information
"contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex
patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations
I. What is the information in a representation? A clarification of the work of $B \& E$ and their students

If one looks carefully inside all the systems produced by Barwise \& Etchemendy's school, one always finds that at some point(s), diagrams are associated with sets of sentences or propositions. These sets serve two distinct purposes:

- To define the models of the diagrams, that is, their "semantic content" in a more usual sense of the expression (these models are then used to define logical consequence between diagrams, or between diagrams and sentences);
- To define what one can infer by observation from the diagram (in heterogeneous systems), for instance via a syntactic "Observe" rule (this can be thought of as the information explicitly available in the representation).
The sets used for these two purposes may not coincide.

On the
information
contained in representations
I. A clarification: What is the
information
"contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Information content, first use: defining models
Example: Venn diagrams in Shin (1994)

On the

information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the
information
"contained in" a
representation?
II. The problem of patterns
"Conjunctive"
patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Information content, first use: defining models Example: Venn diagrams in Shin (1994)

On the

information
contained in
representations
David Waszek

Introduction:
 Barwise and
 Etchemendy's program

I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive" patterns

A set assignment satisfies D if Representing facts of D : the corr. represented facts hold:
Region A_{1} is shaded
Region A_{2} has Xs
The set corr. to A_{1} is empty
The set corr. to A_{2} is nonempty

More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Information content, second use: inference by observation

Example: Venn diagrams in Hammer (1994)

Based on Shin's work, Hammer (1994) made a heterogeneous system for Venn diagrams.

On the
information
contained in
representations
David Waszek

Introduction: Barwise and Etchemendy's program

1. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive" patterns
 More complex patterns
 Patterns in formulas
 Lessons

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Information content, second use: inference by observation

Example: Venn diagrams in Hammer (1994)

Based on Shin's work, Hammer (1994) made a heterogeneous system for Venn diagrams. It includes the following rules:

On the
information
contained in
representations
David Waszek

Introduction: Barwise and Etchemendy's program

I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive" patterns
 More complex patterns
 Patterns in formulas
 Lessons

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Information content, second use: inference by observation
Example: Venn diagrams in Hammer (1994)

Based on Shin's work, Hammer (1994) made a heterogeneous system for Venn diagrams. It includes the following rules:

- " \forall-Observe", which would allow us to infer from D that the set corresponding to A_{1} is empty ;

On the
information
contained in representations

David Waszek

Introduction:
 Barwise and Etchemendy's program

1. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Information content, second use: inference by observation

Example: Venn diagrams in Hammer (1994)

Based on Shin's work, Hammer (1994) made a heterogeneous system for Venn diagrams. It includes the following rules:

- " \forall-Observe", which would allow us to infer from D that the set corresponding to A_{1} is empty ;
- " \exists-Observe", which would allow us to infer from D that the set corresponding to A_{2} is nonempty.

On the
information
contained in representations

David Waszek

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Information content, second use: inference by observation

Example: Venn diagrams in Hammer (1994)

Based on Shin's work, Hammer (1994) made a heterogeneous system for Venn diagrams. It includes the following rules:

- " \forall-Observe", which would allow us to infer from D that the set corresponding to A_{1} is empty ;
- " \exists-Observe", which would allow us to infer from D that the set corresponding to A_{2} is nonempty.
(In this example, basically the same "content" is used to define the semantics and to set up Observe rules.)

On the
information
contained in representations

David Waszek

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

II. The problem of patterns

On the

information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem
of patterns
"Conjunctive"
patterns
More complex
patterns
Patterns in formulas
Lessons
III. The problem of non-
representational
uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (1)

On the information contained in representations

David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive" patterns
 More complex patterns
 Patterns in
 formulas
 Lessons

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (1)

On the

 information contained in representations
David Waszek

Introduction:
Barwise and
Etchemendy's program

1. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (1)

The sets are pairwise disjoint.

"Conjunctive" patterns (1)

The sets are pairwise disjoint. They play symmetric roles.

On the

 information contained in representations
David Waszek

Introduction:

Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational
uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

On the

information
contained in
representations
David Waszek

This is the group table of Klein's four-group:

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

Introduction:
 Barwise and
 Etchemendy's
 program
 I. A clarification: What is the information "contained in" a representation?
 II. The problem of patterns
 "Conjunctive" patterns
 More complex patterns
 Patterns in
 formulas
 Lessons

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

On the

information
contained in
representations
David Waszek

This is the group table of Klein's four-group:

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

The group is commutative.

Introduction:
 Barwise and
 Etchemendy's
 program
 I. A clarification: What is the information "contained in" a representation?
 II. The problem of patterns
 "Conjunctive" patterns
 More complex patterns
 Patterns in
 formulas
 Lessons

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the information contained in representations

David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the information contained in representations

David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?

1

II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the
information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?

$1-2$

II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in

formulas

Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the
information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the
information
"contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the
information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the
information
"contained in" a representation?
II. The problem
of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the

information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the
information
"contained in" a representation?
II. The problem
of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the

information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the
information
"contained in" a representation?
II. The problem
of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the
information
contained in
representations

David Waszek

Introduction:

Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the

information
contained in
representations

David Waszek

Introduction:

Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns

Patterns in

formulas

Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the

information
contained in
representations

David Waszek

Introduction:

Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the
information
contained in
representations

David Waszek

Introduction:

Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

patterns

More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the

information
contained in
representations

David Waszek

Introduction:

Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the

information

contained in representations

David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive" patterns

More complex patterns

Patterns in

formulas

Lessons

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the

information

contained in representations

David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive patterns

More complex patterns

Patterns in

formulas

Lessons

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

"Conjunctive" patterns (2)

Ulam's diagonals

On the
information
contained in representations

David Waszek

Introduction:
Barwise and Etchemendy's program

1. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive" patterns
 More complex patterns
 Patterns in
 formulas
 Lessons

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

More complex patterns (1)

On the

information
contained in

Introduction:

Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

patterns
More complex
patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational
uses of diagrams and formulas
Johann Bernoulli's strange
computations

More complex patterns (2)

Rolle's lemma and the mean value theorem

On the

information
contained in
representations
David Waszek
Let $f:[a, b] \rightarrow \mathbf{R}$ be a differentiable function.
Rolle's lemma: if $f(a)=f(b)$,
then there exists $c \in[a, b]$
such that $f^{\prime}(c)=0$.

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

patterns
More complex
patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational
uses of diagrams and formulas
Johann Bernoulli's strange
computations

More complex patterns (2)

Rolle's lemma and the mean value theorem

On the

information
contained in
representations
David Waszek
Let $f:[a, b] \rightarrow \mathbf{R}$ be a differentiable function. Rolle's lemma: if $f(a)=f(b)$, then there exists $c \in[a, b]$
such that $f^{\prime}(c)=0$.

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

More complex patterns (2)

Rolle's lemma and the mean value theorem

On the

information
contained in
representations
David Waszek
Let $f:[a, b] \rightarrow \mathbf{R}$ be a differentiable function. Rolle's lemma: if $f(a)=f(b)$, then there exists $c \in[a, b]$
such that $f^{\prime}(c)=0$.

Mean value theorem: there exists $c \in[a, b]$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive"
patterns
More complex
patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational
uses of diagrams and formulas
Johann Bernoulli's strange
computations

More complex patterns (2)

Rolle's lemma and the mean value theorem
On the
information
contained in
representations
David Waszek
Let $f:[a, b] \rightarrow \mathbf{R}$ be a differentiable function. Rolle's lemma: if $f(a)=f(b)$, then there exists $c \in[a, b]$
such that $f^{\prime}(c)=0$.
Mean value theorem: there exists $c \in[a, b]$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive"
patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Patterns in formulas (1)

On the

information
contained in
representations
David Waszek
Barwise \& Etchemendy never discuss algebraic formulas. They presumably assumed that (atomic) formulas would unproblematically correspond to a single piece of explicit information.

```
Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
```

II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns

Patterns in

 formulasLessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Patterns in formulas (1)

On the

information
contained in

Barwise \& Etchemendy never discuss algebraic formulas. They presumably assumed that (atomic) formulas would unproblematically correspond to a single piece of explicit information.

But we very often read off patterns from formulas, simple as well as more complex. Some examples :

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex
patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Patterns in formulas (1)

On the

information
contained in

Barwise \& Etchemendy never discuss algebraic formulas. They presumably assumed that (atomic) formulas would unproblematically correspond to a single piece of explicit information.

But we very often read off patterns from formulas, simple as well as more complex. Some examples :

- $2 a b+4 a=c$.

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Patterns in formulas (1)

On the

information
contained in

Barwise \& Etchemendy never discuss algebraic formulas. They presumably assumed that (atomic) formulas would unproblematically correspond to a single piece of explicit information.

But we very often read off patterns from formulas, simple as well as more complex. Some examples :

- $2 a b+4 a=c$. We see a repetition of the a which allows us to write $a(2 b+4)=c$.

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Patterns in formulas (1)

On the
information
contained in

Barwise \& Etchemendy never discuss algebraic formulas. They presumably assumed that (atomic) formulas would unproblematically correspond to a single piece of explicit information.

But we very often read off patterns from formulas, simple as well as more complex. Some examples :

- $2 a b+4 a=c$. We see a repetition of the a which allows us to write $a(2 b+4)=c$.
- We look at polynomials to determine their degree.

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational
uses of diagrams and formulas
Johann Bernoulli's strange
computations

Patterns in formulas (1)

On the
information
contained in

Barwise \& Etchemendy never discuss algebraic formulas. They presumably assumed that (atomic) formulas would unproblematically correspond to a single piece of explicit information.

But we very often read off patterns from formulas, simple as well as more complex. Some examples :

- $2 a b+4 a=c$. We see a repetition of the a which allows us to write $a(2 b+4)=c$.
- We look at polynomials to determine their degree.
- $d=x y+y z+x z$.

Patterns in formulas (1)

On the
information
contained in representations

Barwise \& Etchemendy never discuss algebraic formulas. They presumably assumed that (atomic) formulas would unproblematically correspond to a single piece of explicit information.

But we very often read off patterns from formulas, simple as well as more complex. Some examples :

- $2 a b+4 a=c$. We see a repetition of the a which allows us to write $a(2 b+4)=c$.
- We look at polynomials to determine their degree.
- $d=x y+y z+x z$. We can notice that there is a permutation symmetry between x, y and z.

Introduction:
 Barwise and
 Etchemendy's program
 I. A clarification: What is the information "contained in" a representation?
 II. The problem of patterns
 "Conjunctive" patterns
 More complex patterns
 Patterns in formulas
 Lessons

III. The problem of non-
representational
uses of diagrams and formulas
Johann Bernoulli's strange
computations

Patterns in formulas (2)

Leibniz and the analogy of powers and differences
On the
information
contained in
representations
A real-life example from the historical case study I originally
David Waszek meant to present: Leibniz notices a vague analogy between

$$
\begin{aligned}
\int \overline{z^{e} d^{m} n}= & z^{e} d^{m-1} n-e z^{e-1} d^{m-2} n d z \\
& +e(e-1) z^{e-2} d^{m-3} n \overline{d z}^{2} \\
& \quad-e(e-1)(e-2) z^{e-3} d^{m-4} n \overline{d z}^{3} \text { etc. }
\end{aligned}
$$

and

$$
\begin{aligned}
(A+B)^{z}=A^{z}+\frac{z}{1} A^{z-1} B^{1} & +\frac{z(z-1)}{1.2} A^{z-2} B^{2} \\
& +\frac{z(z-1)(z-2)}{1.2 .3} A^{z-3} B^{3} \text { etc. }
\end{aligned}
$$

Introduction:
 Barwise and
 Etchemendy's program

I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive" patterns
 More complex patterns
 Patterns in formulas
 Lessons

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

So: capturing explicitly what one can see in a representation is difficult.

On the
information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information
"contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Lessons

So: capturing explicitly what one can see in a representation is difficult. If we replace our diagram by a fixed set of sentences, we will lose something.

On the
information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information
"contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns

Patterns in

formulas

Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Lessons

So: capturing explicitly what one can see in a representation is difficult. If we replace our diagram by a fixed set of sentences, we will lose something.

To understand how we use diagrams (as well as formulas), we have to keep the diagram or formula in its original form and take into account the perceptual abilities (in particular, the recognition of symmetries and invariances) that we bring to bear on it.

On the
information
contained in

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Lessons

So: capturing explicitly what one can see in a representation is difficult. If we replace our diagram by a fixed set of sentences, we will lose something.

To understand how we use diagrams (as well as formulas), we have to keep the diagram or formula in its original form and take into account the perceptual abilities (in particular, the recognition of symmetries and invariances) that we bring to bear on it.

Moreover: These examples also show how we engage in meta-representational reasoning: when we try to understand what a given pattern might mean, we reason about the link between the representation and what we take it to be about.

On the
information
contained in representations
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

III. The problem of non-representational uses of formulas or diagrams

On the

information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

III. The problem of non-representational uses of formulas or diagrams

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations
III. The problem of non-representational uses of formulas or diagrams

On the

information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
In contexts of mathematical discovery, this is not always the case.

"Conjunctive" patterns
 More complex patterns
 Patterns in formulas
 Lessons

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations
III. The problem of non-representational uses of formulas or diagrams

On the
information
contained in representations

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive"
patterns
More complex
patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Non-representational uses of formulas and diagrams

Bernoulli's strange symbolic manipulations (1)
Finally, here is the historical case I originally intended to cover today.

On the
information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information
"contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in

formulas

Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Non-representational uses of formulas and diagrams

Bernoulli's strange symbolic manipulations (1)
Finally, here is the historical case I originally intended to cover today. Inspired by Leibniz's analogy, Johann Bernoulli tries to treat differential symbols like algebraic quantities, using rules like:

On the
information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Non-representational uses of formulas and diagrams
Bernoulli's strange symbolic manipulations (1)
Finally, here is the historical case I originally intended to cover today. Inspired by Leibniz's analogy, Johann Bernoulli tries to treat differential symbols like algebraic quantities, using rules like:

- $d^{2} y \times d^{3} y=d^{5} y, \sqrt[3]{d^{6} y}=d^{2} y,\left(d^{3} y\right)^{2}=d^{6} y ;$

On the
information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Non-representational uses of formulas and diagrams
Bernoulli's strange symbolic manipulations (1)
Finally, here is the historical case I originally intended to cover today. Inspired by Leibniz's analogy, Johann Bernoulli tries to treat differential symbols like algebraic quantities, using rules like:

- $d^{2} y \times d^{3} y=d^{5} y, \sqrt[3]{d^{6} y}=d^{2} y,\left(d^{3} y\right)^{2}=d^{6} y ;$
- $d^{0} y=y$ and $\frac{d^{2} y}{d^{2} y}=d^{0} y=y$;

On the
information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive" patterns
 More complex patterns
 Patterns in formulas
 Lessons

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Non-representational uses of formulas and diagrams

Bernoulli's strange symbolic manipulations (1)
Finally, here is the historical case I originally intended to cover today. Inspired by Leibniz's analogy, Johann Bernoulli tries to treat differential symbols like algebraic quantities, using rules like:

- $d^{2} y \times d^{3} y=d^{5} y, \sqrt[3]{d^{6} y}=d^{2} y,\left(d^{3} y\right)^{2}=d^{6} y ;$
- $d^{0} y=y$ and $\frac{d^{2} y}{d^{2} y}=d^{0} y=y$;
- Also $\frac{y}{y}=\frac{d^{0} y}{d^{0} y}=d^{0} y=y$;

On the
information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex
patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Non-representational uses of formulas and diagrams

Bernoulli's strange symbolic manipulations (1)
Finally, here is the historical case I originally intended to cover today. Inspired by Leibniz's analogy, Johann Bernoulli tries to treat differential symbols like algebraic quantities, using rules like:

- $d^{2} y \times d^{3} y=d^{5} y, \sqrt[3]{d^{6} y}=d^{2} y,\left(d^{3} y\right)^{2}=d^{6} y ;$
- $d^{0} y=y$ and $\frac{d^{2} y}{d^{2} y}=d^{0} y=y$;
- Also $\frac{y}{y}=\frac{d^{0} y}{d^{0} y}=d^{0} y=y$;
- $d^{-m}=\int^{m}$.

On the
information
contained in
representations
David Waszek

Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns

"Conjunctive"

 patternsMore complex patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Non-representational uses of formulas and diagrams

Bernoulli's strange symbolic manipulations (1)
Finally, here is the historical case I originally intended to cover today. Inspired by Leibniz's analogy, Johann Bernoulli tries to treat differential symbols like algebraic quantities, using rules like:

- $d^{2} y \times d^{3} y=d^{5} y, \sqrt[3]{d^{6} y}=d^{2} y,\left(d^{3} y\right)^{2}=d^{6} y ;$
- $d^{0} y=y$ and $\frac{d^{2} y}{d^{2} y}=d^{0} y=y$;
- Also $\frac{y}{y}=\frac{d^{0} y}{d^{0} y}=d^{0} y=y$;
- $d^{-m}=\int^{m}$.

Bernoulli astutely uses these rules to compute integrals, and gets correct results.

On the
information
contained in representations

David Waszek

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas

Non-representational uses of formulas and diagrams
Bernoulli's strange symbolic manipulations (1)
Finally, here is the historical case I originally intended to cover today. Inspired by Leibniz's analogy, Johann Bernoulli tries to treat differential symbols like algebraic quantities, using rules like:

- $d^{2} y \times d^{3} y=d^{5} y, \sqrt[3]{d^{6} y}=d^{2} y,\left(d^{3} y\right)^{2}=d^{6} y ;$
- $d^{0} y=y$ and $\frac{d^{2} y}{d^{2} y}=d^{0} y=y$;
- Also $\frac{y}{y}=\frac{d^{0} y}{d^{0} y}=d^{0} y=y$;
- $d^{-m}=\int^{m}$.

Bernoulli astutely uses these rules to compute integrals, and gets correct results. In fact, his methods are only valid in very limited cases, and accounting for that requires a fair amount of reformulation and reinterpretation.

On the
information
contained in representations

David Waszek

Introduction:
Barwise and
Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive"
patterns
More complex
patterns
Patterns in
formulas
Lessons
III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

On the
information
contained in
representations
David Waszek

It is only a posteriori that we can see these formulas as representations carrying definite pieces of information.

Introduction:
 Barwise and
 Etchemendy's
 program
 1. A clarification: What is the information "contained in" a representation?
 II. The problem of patterns
 "Conjunctive"
 patterns
 More complex
 patterns
 Patterns in
 formulas
 Lessons

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

Recapitulation

On the
information
contained in
representations
David Waszek
Introduction: Barwise and Etchemendy's program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in formulas
Lessons
III. The problem of non-representational uses of diagrams and formulas

Johann Bernoulli's strange computations

```
Introduction:
Barwise and
Etchemendy's
program
I. A clarification: What is the information "contained in" a representation?
II. The problem of patterns
"Conjunctive" patterns
More complex patterns
Patterns in
```


formulas

```
Lessons
```

III. The problem of non-
representational uses of diagrams and formulas
Johann Bernoulli's strange
computations

