Using grains in medieval Sanskrit Mathematical texts
A. Keller

Saw workshop 03/2012

Structure of the Līlāvatī

Structure of the Bijagaṇita

Proportionate distribution

(prakṣyepaka) miśraka-vyavahāra
GSK 3.7 Divide the mixed amount (harvest) by the sum of the parts (investments) having equal denominators, after having multiplied by each part (investment). This is the method of investments, <by means of which> one should know the fuits (shares) from the mixed amount (harvest).
GSK.3.8 Two, three, five, and four manas of seeds were thrown together (or invested). This produced two hundred and ten <manas>. What is the share (bhinna-phala) of the harvest of each one.

SaKHYa (S.R. Sarma, Takanori Kusuba, Takao Hayashi Michio Yano), Ganitasārakaumud̄̄, The moonlight of the essence of mathematics by Țhakkura Pherū, Edited with introduction, Translation, and Mathematical Commentary, Manohar, 2009, p. 19, 62, 135.

Proportionate distribution

(praksyepaka) miśraka-vyavahāra
GSK. 3.7 Divide the mixed amount ($j u \bar{\imath}$-harvest) by the sum of the parts (investments) having equal denominators, after having multiplied by each part (amśa- investment). This is the method of investments, <by means of which> one should know the fruits (shares, phala) from the mixed amount (jei- harvest).

GSK.3.8 Two, three, five, and four manas of seeds were (bīya, skt $b \bar{\imath} j a$) thrown together (or invested). This produced two hundred and ten <manas>. What is the share (bhinna-phala) of the harvest of each one.
«of those given by the ploughholder» (farmer)

PG 59 a To obtain the individual shares (of the partners) in the produce (phalāvāptyai), the seeds (contributed by the partners), as divided by their sum, should be severally multiplied by the produce (phala).
svayuti-hrta-prakṣepāt phalena hanyāt prthak phalāvāptyai/ University, Lucknow, 1959. (skt 73, ,eng. 49-50

$$
p_{i}=\frac{M \quad a_{i}}{\sum_{j=1}^{n} a_{j}}
$$

M the total grain,
p_{i} the share of each
BSS.12.16a, BM N1, Tr 38a, GSS vi 79 1/2, MS 15.36, SS
13.19a, L94, GK2.1a, GSK 3.7, PV X16

miśraka-vyavahāra

PG 59 a To obtain the individual shares (of the partners) in the produce (phalāvāptyai), the seeds (contributed by the partners, praksepa), as divided by their sum, should be severally multiplied by the produce (phala).
svayuti-hrta-praksepepāt phalena hanyāt prthak phalāvāptyai/

APG. 59 a prakssipyate upyate santanyate iti prakṣepo bījaṃ, tatutpatih phalam
praksepa is what is hurled (praksip), sowed (vap), stretched (samtan), that is seed (bīja). phala is its yield.
prakşepaka the sum invested by each member of a commercial company

miśraka-vyavahāra

PG. 59 ex. 1 Two, three, five, and four prasthas of seeds (are the contributions of the partners) and two hundred and ten is the produce; what are the shares (of the partners) seperately?
dvau trayah pañca catvārah prasthā bījasya tatphalam/ śatadvayaṃ daśopetạ̣ tatra kiṃ syāt prthak prthak //

$$
\begin{array}{ll}
\mathrm{a}_{1}=2 \\
\mathrm{a}_{2}=3 \\
a_{3}=5 \\
\mathrm{a}_{4}=4
\end{array} \quad \text { prasthas of seeds } \mathrm{p}_{\mathrm{i}}=\underline{\mathrm{M}} \underset{\sum_{\mathrm{j}=1}^{n} \mathrm{a}_{\mathrm{i}}}{ } \begin{aligned}
& \mathrm{a}_{\mathrm{i}}
\end{aligned} \begin{aligned}
& \mathrm{p}_{1}=30 \\
& \mathrm{p}_{2}=45 \\
& \mathrm{p}_{3}=75 \\
& \mathrm{p}_{4}=60
\end{aligned} \text { prasthas of }
$$

$\mathrm{M}=210$

$$
\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{j}}=14
$$

Mounds of grain
rāśi-vyavahāra
L 227 The tenth part of the circumference is equal to the depth/height (vedha) in the case of coarse grain (anaṇu), the eleventh part, in that of fine ($a n \underset{u}{ })$, and the ninth in the instance of bearded corn (śūkadhānya). A sixth of the circumference being squared and multiplied by the depth/height, the product will $\overline{\mathrm{B}}$ e the solid cubits: and they are Māgadhā khāryas.

BSS 12.50, Tr 61-62, SS 13.51, L. 227, PV A29-31

khārikā of Māgdha

hastonmitaiḥ vistṛtidairdhyapiñdaiḥ yad dvādaśāsraṃ
ghanahastasaṃjñam/
dhānyādike yat ghanahastamānaṃ śāstroditā māgdhakhārikā//

L 8 A droṇa is the sixteenth part of a khārī, and an ạḍhaka is a quarter of a droṇa/
A prastha is a fourth of an āḍhaka; and a kuḍava is by ancients termed a quarter of a prastha//
droṇastu khāryāḥ khalu ṣọ̣aśāṃśaḥ syād āḍhako
droṇacaturthabhāgaḥ/
prasthaś caturthāṃśa ihāḍhakasya prasthāñghrirādyaiḥ kuḍavaḥ pradisṭaḥ//
one khārī $\approx 32 \mathrm{~kg}$

Mounds of grain

rāśi-vyavahāra
GSK. 3.96 A mound of grain heaped (anna-rāsí) on an even ground. The square of one sixth of its circumference, multiplied by the height, gives <the volume of grain in> cubic hatthas. One cubic hattha is a patta.

GSK.3.97 In the case of <fine> grains like sesamum (tila) and Kuddava, the height of the mound is one-ninth of its circumference; in the case of mung pulses (mugga) and wheat (gohuma), one tenth; in the case of Vora and horse beans (kulattha) one eleventh.

SaKHYa (S.R. Sarma, Takanori Kusuba, Takao Hayashi Michio Yano), Gaṇitasārakaumudī, The moonlight of the essence of mathematics by Țhakkura Pherū, Edited with introduction, Translation, and Mathematical Commentary, Manohar, 2009, p. 72, 158

```
BSS 12.50, Tr 61-62, SS 13.51, L. 227, PV A29-31
```


Mounds of grain
 rāśi-vyavahāra

GSK. 3.96 A mound of grain heaped (anna-rāsí) on an even ground. The square of one sixth of its circumference, multiplied by the height, gives <the volume of grain in> cubic hatthas. One cubic hattha is a patta.

Let C be the circumference
 h the height
 both in hatthas
 $$
V=\left(\frac{C}{6}\right)^{2} \times h
$$

cubic hatthas

Mounds of grain
rāśi-vyavahāra
GSK.3.97 In the case of <fine> grains like sesamum (tila) and Kuddava, the height of the mound is one-ninth of its circumference; in the case of mung pulses (mugga) and wheat (gohuma), one tenth; in the case of Vora and horse beans (kulattha) one eleventh.

ß
in hatthas
B=9,10,11

Mounds of grain
rāśi-vyavahāra
GSK. 3.98-99 A circular mound is standing like a peak of a mountain. Its height is four and circumference thirty-six <karas>. If the mound is piled agains the side of a wall the circumfrence is half; if against the inside of a corner, it is a quarter; if against the outside of a corner, the circumference is less by a quarter. Know that the height is the same. Tell what will be the volumes of these mounds separately in <cubic> karas.

GSK.3.100 Having multiplied the half, the quarter, and the quarter-less circumferences by two, four, and one and one-third, respectively, obtain the volumes as before and then divide <the results $>$ by the respective multipliers.

Mounds of grain
 rāśi-vyavahāra

$$
V=\left(\frac{C}{6}\right)^{2} \times h
$$

GSK. 3.98-99 A circular mound is standing like a peak of a mountain. Its height is four and circumference thirty-six <karas>. If the mound is piled agains the side of a wall the circumfrence is half; if against the inside of a corner, it is a quarter; if against the outside of a corner, the circumference is less by a quarter. Know that the height is the same. Tell what will be the volumes of these mounds separately in <cubic> karas. Ref: $\operatorname{Tr} 102,104,105$
C $=36$
$\mathrm{h}=4 \quad V=\left(\frac{36}{6}\right)^{2} \times 4=144 \quad$ cubic karas
both in karas
$C^{\prime}=C / 2=18$
$\mathrm{h}=4$

$$
V=\left(\frac{18}{6}\right)^{2} \times 4=72
$$

Yield of Grains

GSK.5.2. Grain grows everywhere, but because of the quality of the soil, there is much difference <in the yield>. Delhi, Hansi and Narhad: know that these are irrigated regions.
GSK.5.4-8. The yield (phala) of food-grains is obtained at harvest from <an area of > one vīgaha of twenty visuvas as follows. Know sixty manas of kodrava grains (kuddava), twentyfour of kidney beans, twenty-two manas of chaula beans, sixteem of sesame, eighteen of mung, twenty of italian millet, fifteen of millet and 'horses' of rice king, sixteen manas of cotton, forty of Indian millet, ten of flax, and so also for sugar-cane. <These are> the autumn havrest. Know, from now on the spring harvest. Fortyfive <manas> of wheat, thirty-two of rice, lentil, and chickpeas, fifty-six manas of barley, ten of mustard, linseed and sfflower, fourteen manas of val pulses, Indian rape, and horse grains. etc.

