Positional and tabular notations in Sanskrit mathematical texts (VIIth-Xth century)

Agathe Keller.

kellera@univ-paris-diderot.fr

January 6, 2012

The decimal place value notation

A definition by Āryabhaṭa (499 CE), and a commentary by Bhāskara (628 CE) (Shukla 1976, Shukla-Sarma 1976, Keller 2006)

Ab.2.2. Ekaṃ ca daśa ca śataṃ ca sahasraṃ tvayutaniyute tathā prayutam

Kotyarbudam ca vṛndam sthānāt sthānam daśaguṇam syāt||

One and ten and a hundred

And one thousand, now ten thousand and a hundred thousand, in the same way a million

Ten million, a hundred million, and a thousand million.

A place should be ten times the \(\text{previous} \) place \(\text{l} \)

BAB.2.2. One sets forth the places of numbers for the sake of easiness. (...)

〈 As for:〉 'One and ten and a hundred and a thousand'. One, ten, a hundred and a thousand have the first, second, third, and fourth place. (...) Ayuta has the fifth place. Ayuta is ten thousand. Niyuta has the sixth place. Niyuta is a lakṣa (a hundred thousand). 'In the same way' (tathā), that is, in exactly the same manner, prayuta has the seventh place. Ten lakṣas are a prayuta (a million). Koṭi has the eighth place. A hundred lakṣas are a koṭi (ten million). Arbuda has the ninth place. Ten koṭis are an arbuda (a hundred million). Vṛṇda has the tenth place. A hundred koṭis are a vṛṇda (a thousand million).

 \langle As for \rangle 'A place should be ten times the \langle previous \rangle place'. Another place \langle should be \rangle ten times the \langle previous \rangle place; it amounts

to: the next place is ten times one's own \langle previously \rangle singled out place.

⟨ Objection⟩

For what purpose is this \langle fourth quarter of verse \rangle stated? For certainly these places \langle given in the first three quarters \rangle are ten times \langle in worth \rangle in regard to the immediately adjoining ones. If the statement \langle in the fourth quarter is made \rangle in order to understand places other than those \langle given in the first three quarters \rangle (that is, the places comming afterwards) then the naming of places is useless.

(...)

⟨ Bhāskara⟩

It should not be understood in this manner. (...) The names of numbers, beginning with one and ending with a thousand million, are fixed \langle by the first three quarters \rangle . \langle With the fourth quarter \rangle 'a place should be ten times the place \langle immediately before it \rangle ', merely an assignment of places to a number beginning with one, is indicated, \langle and \rangle not the names of numbers, because \langle the rule \rangle is of no use \langle for naming numbers \rangle .

Here this may be asked:What is the power ($\delta akti$) of the places, \langle that power with \rangle which one unit becomes ten, a hundred, and a thousand? And truly if this power of places existed, purchasers would have shares in especially desired commodities. And according to \langle their \rangle wish what is purchased would be abundant or scarce. And if this was so, there would be the unexpected possibility for things to be different in worldly affairs ($lokavyavah\bar{a}ra$).

¹In other words, if the place decided the value, in the world as well as in the treatise, one could buy a small amount, and then increase it afterwards, by simply changing its place.

The Pāṭīganita of Śrīdhara (ca. 8th century CE)

(Shukla 1959, Keller 2006b, Keller 2010)

PG.7-8 ekaṃ daśaśataṃ asmāt sahasraṃ ayutaṃ tataḥ paraṃ lakṣam| arbudam abjaṃ kharvaṃ nikharvaṃ ca ||7|| tasmān mahāsarojaṃ śaṅkuṃ saritām patiṃ tatas tv antyam| madhyaṃ parārddham āhur yathottaraṃ daśaguṇam tajjñāh||8||

One, ten, a hundred, a thousand, ten thousand, and after a hundred thousand

A million, ten millions, a hundred millions and a thousand millions $\|7\|$

A billion, ten billions and a hundred billions and then a million billions

Ten million billions and a hundred million billions are stated to be ten times the preceding by those who know them $\|8\|$

Bibliography

- 1. T. Hayashi. Varāhamihira's pandiagonal magic square of the order four. *Historia Mathematica*, 14(2):pp. 159–166, 1987.
- 2. T. Hayashi. Magic Squares in India in *Encyclopaedia of the History of Science, Technology and Medecine in Non-Western Cultures, ed. H. Selin*, volume II, 1252–1258. Springer, 2008.
- 3. A. Keller. Expounding the mathematical seed, Bhāskara and the mathematical chapter of the Āryabhaṭīya, 2 volumes. Birkhaüser, Basel, 2006.
- 4. A. Keller. Comment on a écrit les nombres dans le sous-continent Indien, histoires et enjeux. *Scéance du 17 Novembre 2006, Hommage rendu à Jean Filliozat*: 65–81. Académie des Belles Lettres et Société Asiatique, Paris, 2006.
- 5. A. Keller. On Sanskrit commentaries dealing with mathematics (fifth-twelfth century) in *Looking at it from Asia: the Processes that Shaped the Sources of History of Science (F. B. Establet ed.)*: 211–244. Boston Studies in the Philosophy of Science, 2010.

- 6. B. M. Lall Nigam. Bahi-khata: Te pre-pacioli indian double entry system of bookkeeping. *Abacus*, 22(2):148–161, 1986.
- 7. B. Lall Nigam. Double-entry system of book-keeping. *Chartered Accountant*, New Delhi, XXXVI(2), 1987.
- 8. C. W. Nobes. The pre-pacioli Indian double-entry system of bookkeeping: A comment. *Abacus*, 23(2):182–184, September 1987.
- 9. R. Narasimha. Epistemology and language in Indian astronomy and mathematics. *Journal of Indian Philosophy*, 35:521–541, 2007.
- 10. M. E. Scorgie. Indian imitation or invention of cash-book and algebraic double-entry. *Abacus*, 26(1):63–70, March 1990.
- 11. K. S. Shukla. *Pāṭīgaṇita of Śrīdharācarya*. Lucknow University, Lucknow, 1959.
- 12. K. S. Shukla. Āryabhaṭīya of Āryabhaṭa, with the commentary of Bhāskara I and Someśvara. Indian National Science Academy, New-Dehli, 1976.
- 13. K. S. Shukla, K. V.; Sharma. Āryabhaṭīya of Āryabhaṭa, critically edited with translation. Indian National Science Academy, New-Delhi, 1976.
- 14. F. Staal. The Sanskrit of science. *Journal of Indian philosophy*, 23:73–127, 1995.