Logical Constants from a Computational Point of View

Alberto Naibo ${ }^{1}$ Mattia Petrolo ${ }^{2}$
${ }^{1}$ Université Paris 1 - EXeCO
${ }^{2}$ Université Paris 7 - Università Roma Tre

March 22, 2010
Workshop Proofs and Meaning
MSH, Paris

Logical Constants from a Computational Point of View

Alberto Naibo ${ }^{1}$ Mattia Petrolo ${ }^{2}$
${ }^{1}$ Université Paris 1 - EXeCO
${ }^{2}$ Université Paris 7 - Università Roma Tre

March 22, 2010
Workshop Proofs and Meaning
MSH, Paris

Outline

(1) Introduction
(2) Proofs-as-programs correspondence
(3) Applications of $\equiv_{\beta \eta}$ to the theory of meaning
(4) Conclusions and future work

Outline

(1) Introduction
(2) Proofs-as-programs correspondence
(3) Applications of $\equiv_{\beta \eta}$ to the theory of meaning
(4) Conclusions and future work

Logical inferentialism (1)

Key ideas

- Semantics is not given by the denotation of a linguistic entity, but by its (correct) use in the language: in logic and formal systems this corresponds to assign a semantic rôle to the deductive and proof-theoretic aspects.
- The meaning of logical constants is determined by the inferential rules that govern their use.

A problem (Prior [1960])

- tonk connective shows that some constraints are needed in order to define correctly the meaning of logical constants.

Logical inferentialism (2)

A solution (Dummett [1973])

- The conditions under which a given logical constant can be asserted should be in harmony with the consequences one can draw from the same logical constant.
- We focus on the formalization of harmony as normalization (Prawitz [1973], Dummett [1991]): the elimination rules for a certain connective can never allow to deduce more than what follows from the direct grounds of its introduction rules.
- Such a criterion bans tonk

$$
\frac{\frac{\mathcal{D}}{\Gamma \vdash A}}{\frac{\Gamma \vdash \text { Atonk } B}{\Gamma \vdash B} \text { tonk }- \text { intro }} \text { tonk - elim }
$$

- It is impossible to define a normalization strategy.

A problem with harmony-as-normalization (1)

- The criterion of harmony-as-normalization does not ban all the pathological constants: <harmony is an excessively modest demand»
(Dummett [1991], p. 287).
- Let us add a new logical connective $(*)$ to NJ through the following rules:

$$
*-\text { intro } \frac{\Gamma \vdash A \quad \Gamma^{\prime} \vdash B}{\Gamma, \Gamma^{\prime} \vdash A * B} \quad \frac{\Gamma \vdash A * B \quad \Gamma^{\prime} \vdash A}{\Gamma, \Gamma^{\prime} \vdash B} * \text {-elim }
$$

- These rules enjoy a normalization strategy:

$$
\underset{* \text { *-intro }}{\frac{\frac{\mathcal{D}}{\Gamma \vdash A}}{\Gamma \vdash \cdot \frac{\mathcal{D}^{\prime}}{\Gamma^{\prime} \vdash B}} \quad \frac{\mathcal{D}^{\prime \prime}}{\Gamma, \Gamma^{\prime} \vdash A * B}} \quad \rightsquigarrow \quad \frac{\mathcal{D}^{\prime}}{\Gamma, \Gamma^{\prime}, \Gamma^{\prime \prime} \vdash B}
$$

A problem with harmony-as-normalization (2)

- The $*$-connective does not enjoy the property of deducibility of identicals (Hacking [1979]), i.e. it is not possible to prove $A * B$ starting from the only assumption $A * B$ with a non-trivial proof.
- Note that such a condition holds for other connectives, e.g.

$$
\begin{aligned}
& \begin{array}{c}
\frac{A \Rightarrow B \vdash A \Rightarrow B}{A+A x} \frac{A \vdash A}{} A x \\
\frac{A \Rightarrow B, A \vdash B}{A \Rightarrow B \vdash A \Rightarrow B} \Rightarrow-\text { intro }
\end{array} \\
& \begin{aligned}
\frac{A \wedge B \vdash A \wedge B}{A \wedge B \vdash A} & A x-e l i m_{1}
\end{aligned} \frac{\frac{A \wedge B \vdash A \wedge B}{A \wedge B \vdash B}}{\frac{A x}{A-e^{\prime}} \wedge-\text { intro }}
\end{aligned}
$$

- This procedure fails for $*$:

$$
*-\operatorname{elim} \frac{\frac{A * B \vdash A * B}{A} A x \quad}{\frac{A * B, A \vdash B}{?}} A x
$$

A problem with harmony-as-normalization (3)

- In the Sequent Calculus setting, this property of deducibility of identicals corresponds to the so-called atomic 'axiom-expansion' procedure. Again, for \Rightarrow we have:
- The absence of this property for $*$ indicates that the meaning of a connective is not only given by right and left rules but also by the axiom of the form $A *$ $B \vdash A * B$.
- Indeed, the meaning of $*$ is not only given by its use (inferential rules) but also by some extra stipulation.

A problem with harmony-as-normalization (4)

- Therefore, the failure of deducibility of identicals is a sign that something is wrong with *.
- Why is this property important? How can we justify it?
- In order to answer these questions, let us look at the computational properties of Natural Deduction.

Outline

(1) Introduction

(2) Proofs-as-programs correspondence
(3) Applications of $\equiv_{\beta \eta}$ to the theory of meaning
(4) Conclusions and future work

Curry-Howard isomorphism

- The Curry-Howard isomorphism establishes a one-to-one correspondance between Natural Deduction and λ-calculus, e.g.

$$
\begin{array}{clc}
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x . t: A \Rightarrow B} \Rightarrow-\text { intro } \quad \Gamma^{\prime} \vdash u: A \\
\Gamma, \Gamma^{\prime} \vdash(\lambda x . t) u: B
\end{array} \Rightarrow-e l i m \quad \rightsquigarrow \quad \Gamma, \Gamma^{\prime} \vdash t\left[^{u} / x\right]: B
$$

Indeed, normalization in NJ corresponds to β-reduction in λ-calculus.

- λ-terms are considered as programs and a type judgement $t: A$ is called a program specification.
- The β-reduction correponds to a program execution, i.e. the computation of a certain program.

η-expansion

- In λ-calculus the main objects are programs, which are intensional objects: even if two programs compute the same mathematical functions, usually they are not considered as identical (e.g. one can be more efficient than the other).
- This means that there exist two terms t and $t^{\prime},(t) u \equiv_{\beta}\left(t^{\prime}\right) u$ for all terms u, but not $t \equiv{ }_{\beta} t^{\prime}$.
- In order to work in the usual extensional setting, the following rules (η-expansion) are needed:

$$
\begin{gathered}
t \longrightarrow \eta \lambda x(t) x \\
(\text { with } x \notin F V(t)) \\
t \longrightarrow \eta\left\langle\pi_{1}(t), \pi_{2}(t)\right\rangle
\end{gathered}
$$

- The relation of η-expansion is type-preserving.

η-expansion and deducibility of identicals

- η-expansion corresponds exactly to the property of deducibility of identicals:

$$
\begin{gathered}
\frac{\overline{t: A \Rightarrow B \vdash t: A \Rightarrow B} A x}{} \frac{\overline{x: A \vdash x: A}}{}{ }^{A x} \text { - elim } \\
\frac{t: A \Rightarrow B, x: A \vdash(t) x: B}{t: A \Rightarrow B \vdash \lambda x(t) x: A \Rightarrow B} \Rightarrow-\text { intro } \\
\frac{\frac{t: A \wedge B \vdash t: A \wedge B}{t: A \wedge B \vdash \pi_{1}(t): A} \wedge-\text { elim } \quad \frac{t: A \wedge B \vdash t: A \wedge B}{t: A \wedge B \vdash \pi_{2}(t): B}}{t: A \wedge B \vdash\left\langle\pi_{1}(t), \pi_{2}(t)\right\rangle: A \wedge B} \wedge-\text { elim } \\
t \text { intro }
\end{gathered}
$$

Extensionality in λ-calculus

- We can define $\beta \eta$-equivalence $\left(\equiv_{\beta_{\eta}}\right.$) as the smallest equivalence relation containing $\longrightarrow \beta$ and $\longrightarrow{ }_{\eta}$.
- Extensionality: If t and t^{\prime} are such that $(t) u \equiv_{\beta \eta}\left(t^{\prime}\right) u$ for all terms u, then $t \equiv_{\beta \eta} t^{\prime}$
- Can we demand to add some other type-preserving relation on λ-terms?

Maximality of $={ }_{\beta \eta}$

- The answer is no. It is a consequence of Böhm's Theorem, i.e.
- Theorem. Let s and t be closed normal λ-terms that are not $\beta \eta$-equivalent. Then there exist closed terms $u_{1} \ldots u_{k}$ such that
(s) $u_{1} \ldots u_{k}=\lambda x y \cdot y$ (t) $u_{1} \ldots u_{k}=\lambda x y \cdot x$
i.e. s and t can be distinguished by their computational behaviour.
- Corollary. Let \equiv_{τ} be an equivalence relation on Λ, containing \equiv_{β}, and such that it is λ-compatible. If there exist two normalizable non $\beta \eta$-equivalent terms t, t^{\prime} such that $t \equiv_{\tau} t^{\prime}$, then $v \equiv_{\tau} v^{\prime}$ for all terms v, v^{\prime}.

The adjunction of another equivalence relation on λ-terms, forces the collapse of the whole set of normal λ-terms.

Maximality of $={ }_{\beta \eta}$

- The answer is no. It is a consequence of Böhm's Theorem, i.e.
- Theorem. Let s and t be closed normal λ-terms that are not $\beta \eta$-equivalent. Then there exist closed terms $u_{1} \ldots u_{k}$ such that
(s) $u_{1} \ldots u_{k}=\lambda x y \cdot y$
(t) $u_{1} \ldots u_{k}=\lambda x y \cdot x$
i.e. s and t can be distinguished by their computational behaviour.
- Corollary. Let \equiv_{τ} be an equivalence relation on Λ, containing \equiv_{β}, and such that it is λ-compatible. If there exist two normalizable non $\beta \eta$-equivalent terms t, t^{\prime} such that $t \equiv_{\tau} t^{\prime}$, then $v \equiv_{\tau} v^{\prime}$ for all terms v, v^{\prime}.

The corollary suggests to take $\beta \eta$-equivalence as a sufficient condition for being a logical constant.

Outline

(1) Introduction

(2) Proofs-as-programs correspondence
(3) Applications of $\equiv_{\beta \eta}$ to the theory of meaning

$\equiv_{\beta \eta}$ and theory meaning

- The $\equiv_{\beta \eta}$ allows to answer to two fundamental questions in the theory of meaning:

1) when are two different assertions, involving the same proposition, identical?
2) when do two different propositions have the same meaning?

- The first question can be reformulated in the following manners:
$\left.1^{\prime}\right)$ when are two program specifications identical?
$1^{\prime \prime}$) when are we making the same judgment?
- The second question corresponds to the search of a synonymity criterion for propositions.

Identity criteria for assertions

- The computational approach allows to distinguish between two types of identity criterion:

1. Intentional criterion: two assertions are intensionally identical iff they are β-equivalent. To establish their identity is sufficient to take the two λ-terms, eliminate all their detours (redex) and look if they converge to the same normal form. The procedure is completely internal to the two λ-terms, no other information is necessary.
2. Extensional criterion: two assertions (not β-equivalent) are extensionally identical iff, when put into the same context, they produce the same effects. This is nothing else that being η-equivalent.

This last criterion corresponds to a sort of principle of identity of indiscernibles formulated for assertions: two assertions are identical when it is not possible to distinguish them on the basis of their behaviour in all possible contexts of application.

- Putting these two criteria together we get a full criterion for identity of assertions:
two assertions are identical iff they are $\beta \eta$-equivalent.

Example (1)

- In the light of Curry-Howard isomporhism all the λ-terms of type

$$
N a t:=(N \Rightarrow N) \Rightarrow(N \Rightarrow N)
$$

(with N atomic) correspond to a Church numeral: $\bar{n}=\lambda f \lambda x \underbrace{(f) \ldots(f)}_{n} x$ (with $x: N$ and $f: N \Rightarrow N$).

- When we apply the program that corresponds to the sum

$$
+:=\lambda m \lambda n \lambda f \lambda x((m) f)((n) f) x: N a t \Rightarrow(N a t \Rightarrow N a t)
$$

to two numerals, we obtain a non-normal λ-term of type Nat.
For example, take $m=n=\overline{1}=\lambda f . \lambda x(f) x: N a t$,

$$
\overline{1}+\overline{1}=((\lambda m \lambda n \lambda f \lambda x((m) f)((n) f) x) \lambda f \lambda x(f) x) \lambda f \lambda x(f) x: N a t
$$

is a non-normal λ-term that, once β-reduced, brings to $\overline{2}=\lambda f \lambda x(f)(f) x$: Nat, which is in normal form.

- By the intensional criterion we can say that the two assertions $\overline{2}$: Nat and $\overline{1}+\overline{1}$: Nat are intentionnally identical.

Example (2)

- Given the two assertions

$$
\lambda f . f:(N \Rightarrow N) \Rightarrow(N \Rightarrow N)
$$

and

$$
\lambda f \lambda x(f) x:(N \Rightarrow N) \Rightarrow(N \Rightarrow N)
$$

if the only identity criterion was the intentional one, we would be obliged to affirm that the two assertions are different, beacuse they are both in β-normal form.

- On the other hand, it is easy to check that, when applied to any terms $u: N \Rightarrow N$ and $v: N$, the two assertions give the same result of type N :

$$
\begin{gathered}
((\lambda f . f) u) t \sim_{\beta}(u) t \\
((\lambda f \lambda x(f) x) u) t \sim_{\beta}(u) t
\end{gathered}
$$

- The second assertion is just an η-expansion of the first one. It's only with the extensional criterion that we can judge these two assertions as identical (they both stand for $\overline{1}: N a t$).

Non-identical assertions

- The quotient obtained by the $\beta \eta$-equivalence relation over the class of the λ-terms of the same type A is not degenerated: not all assertions involving the same proposition A are identified.
- For example,

$$
\lambda z \lambda y \lambda x \cdot x:(A \Rightarrow A) \Rightarrow(B \Rightarrow(A \Rightarrow A))
$$

and

$$
\lambda z \lambda y \cdot z:(A \Rightarrow A) \Rightarrow(B \Rightarrow(A \Rightarrow A))
$$

are not $\beta \eta$-equivalent.

- This means that the two assertions can be justified in different ways.
- Moreover, once they interact with a certain context they behave in different manners and produce different results. In an Austinian sense, we can say that the same proposition can be used to do different things.

A criterion for identity of meaning?

- Is there a relation between two different propositions that allows to identify them with respect to meaning?
- Certainly the logical equivalence relation is not a plausible candidate: it acts only at formulas level, i.e. what counts is just the fact of having the same truth-values in all possible models.
- If we want to respect the inferentialist semantics we have to look for another candidate, namely a relation that acts at proofs level.

Isomorphism of types

- Isomorphism of types: two types A and B are isomorphic iff there exist two morphisms $f: A \rightarrow B$ and $g: B \rightarrow A$, such that $g \circ f=I d_{A}$ and $f \circ g=I d_{B}$.
- Computational isomoprhism (λ-calculus): two types A and B are computationally isomorphic iff there exist two sequents of the form $x: A \vdash t_{1}: B$ and $y: B \vdash t_{2}: A$ (with x free in t_{1} and y free in t_{2}) such that for the two λ-terms $\lambda x . t_{1}: A \Rightarrow B$ and $\lambda y . t_{2}: B \Rightarrow A$ holds $\left(\lambda y \cdot t_{2}\right) t_{1}: A \equiv_{\beta \eta} x: A$ and $\left(\lambda x \cdot t_{1}\right) t_{2}: B \equiv_{\beta \eta} y: B$.

Alternatively (working with closed terms): A and B are computationally isomorphic iff $\lambda x\left(\lambda y \cdot t_{2}\right) t_{1}: A \Rightarrow A \equiv_{\beta \eta} \lambda x \cdot x: A \Rightarrow A$ and $\lambda y\left(\lambda x . t_{1}\right) t_{2}: B \Rightarrow B \equiv_{\beta \eta} \lambda y \cdot y: B \Rightarrow B$.

Computational isomorphism and logical equivalence

- It is important to note that computational isomorphism refines the notion of logical equivalence: the equivalence relation induced by computational isomorphism is strictly stronger than the relation of logical equivalence.
- For example $A \wedge A \dashv A$, nonetheless it is not a computational isomorphism.

Note: in this case, the fact that they are not computationally isomorphic can be appreciated especially at the λ-terms level:
i. if we compose $x: A \vdash\langle x, x\rangle: A \wedge A$ with $t: A \wedge A \vdash \pi_{1}(t): A$, we obtain $t: A \wedge A \vdash(\lambda x .(x, x\rangle) \pi_{1}(t): A \wedge A$.
ii. After β-reduction we get: $t: A \wedge A \vdash\left\langle\pi_{1}(t), \pi_{1}(t)\right\rangle: A \wedge A$.
iii. Now, $\left\langle\pi_{1}(t), \pi_{1}(t)\right\rangle$ is not a η-expansion of t, so we can't return to the identity $t: A \wedge A \vdash t: A \wedge A$.

Synonymity criterion

- In the light of the Curry-Howard isomorphism a proposition corresponds to a type.

Thesis (Došen [2003])

Two propositions are synonymic iff they are computationally isomorphic.

- Two propositions that are computationnally isomorphic behave in the same manner in proofs:

Given two isomporhic propositions A and B, if there is a proof α in which one of them, say A, figure as assumption (resp. as conlcusion), it is possible to compose α with a proof β of $B \vdash A($ resp. $A \vdash B)$, obtaining a proof α^{\prime} in which A is replaced by B, so that nothing is lost, nor gained. Indeed, it is always possible to invert the process and restore the initial situation: by composing α^{\prime} with a proof γ of $A \vdash B$ (resp. $B \vdash A$), we obtain, after $\beta \eta$-reduction, the original proof α.

- This means that A and B are mutually interchangeable in proofs and that the computational effects of this operation can always be annulled.

An exemple

Given the proof $\frac{\frac{A \wedge B}{A} \wedge \text {-elim }_{1}}{\frac{A \vee B}{D \Rightarrow(A \vee B)} \Rightarrow \text {-intro }}$-intro and the isomorphic propositions $A \wedge B$ and $B \wedge A$

Outline

(1) Introduction

(2) Proofs-as-programs correspondence
(3) Applications of $\equiv_{\beta \eta}$ to the theory of meaning

4 Conclusions and future work

Conclusions

- The properties of β-reduction and η-expansion (or, more generally $\equiv_{\beta \eta}$) are the minimal requirements that we demand for 'defining' a logical constant.
- The advantage of working in a computational setting is that it is easier to detect some essential proof-theoretical properties. An example is the η-expansion: it is a property that naturally emerges in the characterization of a consistent computational system, but that it is more difficult to justify in purely logical terms.
- Moreover, our approach constitutes an attempt to solve some basic questions of a theory of meaning, such as the identity criterion for assertions and the problem of the notion of synonymity.

Future work

- A comparison of our criterion with Dummett's stability (Dummett [1991]) and Negri/von Plato's general inversion principle (Negri/von Plato [2001], Negri [2002]).

For exemple, can we establish a hierarchy between these criteria (from the weakest to the strongest)?

