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2Université Paris 7 - Università Roma Tre
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Logical inferentialism (1)
Key ideas

Semantics is not given by the denotation of a linguistic entity, but by its
(correct) use in the language: in logic and formal systems this corresponds to
assign a semantic rôle to the deductive and proof-theoretic aspects.

The meaning of logical constants is determined by the inferential rules that
govern their use.

A problem (Prior [1960])

tonk connective shows that some constraints are needed in order to define
correctly the meaning of logical constants.

Ax
A ` A

tonk− intro1

A ` A tonkB
tonk− elim2

A ` B
⇒ −intro

` A⇒ B

Ax
B ` B

tonk− intro2

B ` A tonkB
tonk− elim1

B ` A
⇒ −intro

` B ⇒ A
∧ − intro

` (A⇒ B) ∧ (B ⇒ A)

` A⇔ B
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Logical inferentialism (2)

A solution (Dummett [1973])

The conditions under which a given logical constant can be asserted should
be in harmony with the consequences one can draw from the same logical
constant.

We focus on the formalization of harmony as normalization (Prawitz [1973],

Dummett [1991]): the elimination rules for a certain connective can never
allow to deduce more than what follows from the direct grounds of its
introduction rules.

Such a criterion bans tonk

D
Γ ` A

tonk− intro
Γ ` AtonkB

tonk− elim
Γ ` B

 ?

It is impossible to define a normalization strategy.
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A problem with harmony-as-normalization (1)

The criterion of harmony-as-normalization does not ban all the pathological
constants: �harmony is an excessively modest demand�

(Dummett [1991], p. 287).

Let us add a new logical connective (V) to NJ through the following rules:

Γ ` A Γ′ ` B
V−intro

Γ, Γ′ ` A V B

Γ ` A V B Γ′ ` A
V−elim

Γ, Γ′ ` B

These rules enjoy a normalization strategy:

D
Γ ` A

D′

Γ′ ` B
V−intro

Γ, Γ′ ` A V B

D′′

Γ′′ ` A
V−elim

Γ, Γ′, Γ′′ ` B

 D′

Γ′ ` B
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A problem with harmony-as-normalization (2)

The V-connective does not enjoy the property of deducibility of identicals
(Hacking [1979]), i.e. it is not possible to prove A V B starting from the only
assumption A V B with a non-trivial proof.

Note that such a condition holds for other connectives, e.g.

Ax
A⇒ B ` A⇒ B

Ax
A ` A ⇒ −elim

A⇒ B,A ` B
⇒ −intro

A⇒ B ` A⇒ B

Ax
A ∧ B ` A ∧ B ∧ − elim1

A ∧ B ` A

Ax
A ∧ B ` A ∧ B ∧ − elim2

A ∧ B ` B ∧ − intro
A ∧ B ` A ∧ B

This procedure fails for V:

Ax
A V B ` A V B

Ax
A ` A

V−elim
A V B,A ` B

?

A. Naibo, M. Petrolo (Paris 1, Paris 7 - Roma 3) Proofs and Meaning, MSH, Paris March 22, 2010 8 / 31



A problem with harmony-as-normalization (3)

In the Sequent Calculus setting, this property of deducibility of identicals
corresponds to the so-called atomic ‘axiom-expansion’ procedure. Again, for
⇒ we have:

Ax
A ` A

Ax
B ` B ⇒L

A⇒ B,A ` B
⇒R

A⇒ B ` A⇒ B

The absence of this property for V indicates that the meaning of a connective
is not only given by right and left rules but also by the axiom of the form A V
B ` A V B.

Indeed, the meaning of V is not only given by its use (inferential rules) but
also by some extra stipulation.
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A problem with harmony-as-normalization (4)

Therefore, the failure of deducibility of identicals is a sign that something is
wrong with V.

Why is this property important? How can we justify it?

In order to answer these questions, let us look at the
computational properties of Natural Deduction.
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Curry-Howard isomorphism

The Curry-Howard isomorphism establishes a one-to-one correspondance
between Natural Deduction and λ-calculus, e.g.

Γ, x : A ` t : B
⇒ −intro

Γ ` λx.t : A⇒ B Γ′ ` u : A ⇒ −elim
Γ, Γ′ ` (λx.t)u : B

 Γ, Γ′ ` t[u/x ] : B

Γ ` t : A Γ′ ` u : B ∧ − intro
Γ, Γ′ ` 〈t, u〉 : A ∧ B

∧ − elim
Γ, Γ′ ` π1(〈t, u〉) : A

 Γ ` t : A

Indeed, normalization in NJ corresponds to β-reduction in λ-calculus.

λ-terms are considered as programs and a type judgement t : A is called a
program specification.

The β-reduction correponds to a program execution, i.e. the computation of
a certain program.
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η-expansion

In λ-calculus the main objects are programs, which are intensional objects:
even if two programs compute the same mathematical functions, usually they
are not considered as identical (e.g. one can be more efficient than the other).

This means that there exist two terms t and t ′, (t)u ≡β (t ′)u for all terms u,
but not t ≡β t ′.

In order to work in the usual extensional setting, the following rules
(η-expansion) are needed:

t −→η λx(t)x

(with x /∈ FV (t))

t −→η 〈π1(t), π2(t)〉

The relation of η-expansion is type-preserving.
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η-expansion and deducibility of identicals

η-expansion corresponds exactly to the property of deducibility of identicals:

Ax
t : A ⇒ B ` t : A ⇒ B

Ax
x : A ` x : A ⇒ −elim

t : A ⇒ B, x : A ` (t)x : B
⇒ −intro

t : A ⇒ B ` λx(t)x : A ⇒ B

Ax
t : A ∧ B ` t : A ∧ B ∧ − elim1
t : A ∧ B ` π1(t) : A

Ax
t : A ∧ B ` t : A ∧ B ∧ − elim2
t : A ∧ B ` π2(t) : B

∧ − intro
t : A ∧ B ` 〈π1(t), π2(t)〉 : A ∧ B
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Extensionality in λ-calculus

We can define βη-equivalence (≡βη) as the smallest equivalence relation
containing −→β and −→η.

Extensionality: If t and t ′ are such that (t)u ≡βη (t ′)u for all terms u, then
t ≡βη t ′

Can we demand to add some other type-preserving relation on λ-terms?
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Maximality of =βη

The answer is no. It is a consequence of Böhm’s Theorem, i.e.

Theorem. Let s and t be closed normal λ-terms that are not βη-equivalent.
Then there exist closed terms u1...uk such that

(s)u1...uk = λxy .y
(t)u1...uk = λxy .x

i.e. s and t can be distinguished by their computational behaviour.

Corollary. Let ≡τ be an equivalence relation on Λ, containing ≡β , and such
that it is λ-compatible. If there exist two normalizable non βη-equivalent
terms t, t ′ such that t ≡τ t ′, then v ≡τ v ′ for all terms v , v ′.

The adjunction of another equivalence relation on λ-terms, forces the collapse of
the whole set of normal λ-terms.
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Maximality of =βη

The answer is no. It is a consequence of Böhm’s Theorem, i.e.

Theorem. Let s and t be closed normal λ-terms that are not βη-equivalent.
Then there exist closed terms u1...uk such that

(s)u1...uk = λxy .y
(t)u1...uk = λxy .x

i.e. s and t can be distinguished by their computational behaviour.

Corollary. Let ≡τ be an equivalence relation on Λ, containing ≡β , and such
that it is λ-compatible. If there exist two normalizable non βη-equivalent
terms t, t ′ such that t ≡τ t ′, then v ≡τ v ′ for all terms v , v ′.

The corollary suggests to take βη-equivalence as a sufficient condition for being a
logical constant.
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≡βη and theory meaning

The ≡βη allows to answer to two fundamental questions in the theory of
meaning:

1) when are two different assertions, involving the same proposition, identical?

2) when do two different propositions have the same meaning?

The first question can be reformulated in the following manners:

1’) when are two program specifications identical?
1”) when are we making the same judgment?

The second question corresponds to the search of a synonymity criterion for
propositions.
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Identity criteria for assertions

The computational approach allows to distinguish between two types of
identity criterion:

1. Intentional criterion: two assertions are intensionally identical iff they are
β-equivalent. To establish their identity is sufficient to take the two λ-terms,
eliminate all their detours (redex) and look if they converge to the same
normal form. The procedure is completely internal to the two λ-terms, no
other information is necessary.

2. Extensional criterion: two assertions (not β-equivalent) are extensionally
identical iff, when put into the same context, they produce the same effects.
This is nothing else that being η-equivalent.

This last criterion corresponds to a sort of principle of identity of indiscernibles

formulated for assertions: two assertions are identical when it is not possible to

distinguish them on the basis of their behaviour in all possible contexts of application.

Putting these two criteria together we get a full criterion for identity of
assertions:

two assertions are identical iff they are βη-equivalent.
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Example (1)
In the light of Curry-Howard isomporhism all the λ-terms of type

Nat := (N ⇒ N)⇒ (N ⇒ N)

(with N atomic) correspond to a Church numeral: n = λf λx (f ) . . . (f )︸ ︷︷ ︸
n

x

(with x : N and f : N ⇒ N).

When we apply the program that corresponds to the sum

+ := λmλnλf λx((m)f )((n)f )x : Nat ⇒ (Nat ⇒ Nat)

to two numerals, we obtain a non-normal λ-term of type Nat.
For example, take m = n = 1 = λf .λx(f )x : Nat,

1 + 1 = ((λmλnλf λx((m)f )((n)f )x)λf λx(f )x)λf λx(f )x : Nat

is a non-normal λ-term that, once β-reduced, brings to
2 = λf λx(f )(f )x : Nat, which is in normal form.

By the intensional criterion we can say that the two assertions 2 : Nat and
1 + 1 : Nat are intentionnally identical.

A. Naibo, M. Petrolo (Paris 1, Paris 7 - Roma 3) Proofs and Meaning, MSH, Paris March 22, 2010 21 / 31



Example (2)
Given the two assertions

λf .f : (N ⇒ N)⇒ (N ⇒ N)

and
λf λx(f )x : (N ⇒ N)⇒ (N ⇒ N)

if the only identity criterion was the intentional one, we would be obliged to
affirm that the two assertions are different, beacuse they are both in
β-normal form.

On the other hand, it is easy to check that, when applied to any terms
u : N ⇒ N and v : N, the two assertions give the same result of type N:

((λf .f )u)t ;β (u)t

((λf λx(f )x)u)t ;β (u)t

The second assertion is just an η-expansion of the first one.
It’s only with the extensional criterion that we can judge these two assertions
as identical (they both stand for 1 : Nat).
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Non-identical assertions

The quotient obtained by the βη-equivalence relation over the class of the
λ-terms of the same type A is not degenerated: not all assertions involving
the same proposition A are identified.

For example,
λzλyλx .x : (A⇒ A)⇒ (B ⇒ (A⇒ A))

and
λzλy .z : (A⇒ A)⇒ (B ⇒ (A⇒ A))

are not βη-equivalent.

This means that the two assertions can be justified in different ways.

Moreover, once they interact with a certain context they behave in different
manners and produce different results. In an Austinian sense, we can say that
the same proposition can be used to do different things.

A. Naibo, M. Petrolo (Paris 1, Paris 7 - Roma 3) Proofs and Meaning, MSH, Paris March 22, 2010 23 / 31



A criterion for identity of meaning?

Is there a relation between two different propositions that allows to identify
them with respect to meaning?

Certainly the logical equivalence relation is not a plausible candidate: it acts
only at formulas level, i.e. what counts is just the fact of having the same
truth-values in all possible models.

If we want to respect the inferentialist semantics we have to look for another
candidate, namely a relation that acts at proofs level.
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Isomorphism of types

Isomorphism of types: two types A and B are isomorphic iff there exist two
morphisms f : A→ B and g : B → A, such that g ◦ f = IdA and f ◦ g = IdB .

Computational isomoprhism (λ-calculus): two types A and B are
computationally isomorphic iff there exist two sequents of the form
x : A ` t1 : B and y : B ` t2 : A (with x free in t1 and y free in t2)
such that for the two λ-terms λx .t1 : A⇒ B and λy .t2 : B ⇒ A holds
(λy .t2)t1 : A ≡βη x : A and (λx .t1)t2 : B ≡βη y : B.

Alternatively (working with closed terms): A and B are computationally
isomorphic iff λx(λy .t2)t1 : A⇒ A ≡βη λx .x : A⇒ A and
λy(λx .t1)t2 : B ⇒ B ≡βη λy .y : B ⇒ B.
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Computational isomorphism and logical equivalence

It is important to note that computational isomorphism refines the notion of
logical equivalence: the equivalence relation induced by computational
isomorphism is strictly stronger than the relation of logical equivalence.

For example A ∧ A a` A, nonetheless it is not a computational isomorphism.

Note: in this case, the fact that they are not computationally isomorphic can be
appreciated especially at the λ-terms level:

i. if we compose x : A ` 〈x , x〉 : A ∧ A with t : A ∧ A ` π1(t) : A, we obtain
t : A ∧ A ` (λx .〈x , x〉)π1(t) : A ∧ A.

ii. After β-reduction we get: t : A ∧ A ` 〈π1(t), π1(t)〉 : A ∧ A.

iii. Now, 〈π1(t), π1(t)〉 is not a η-expansion of t, so we can’t return to the identity
t : A ∧ A ` t : A ∧ A.
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Synonymity criterion

In the light of the Curry-Howard isomorphism a proposition corresponds to a
type.

Thesis (Došen [2003])

Two propositions are synonymic iff they are computationally isomorphic.

Two propositions that are computationnally isomorphic behave in the same
manner in proofs:

Given two isomporhic propositions A and B, if there is a proof α in which one of
them, say A, figure as assumption (resp. as conlcusion), it is possible to compose
α with a proof β of B ` A (resp. A ` B), obtaining a proof α′ in which A is
replaced by B, so that nothing is lost, nor gained. Indeed, it is always possible to
invert the process and restore the initial situation: by composing α′ with a proof γ
of A ` B (resp. B ` A), we obtain, after βη-reduction, the original proof α.

This means that A and B are mutually interchangeable in proofs and that the
computational effects of this operation can always be annulled.
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An exemple

Given the proof

A ∧ B ∧-elim1
A ∨-intro2

A ∨ B
⇒-intro

D ⇒ (A ∨ B)

and the isomorphic propositions A ∧ B and B ∧ A

[A ∧ B]1

∧-elim1
A ∨-intro2

A ∨ B
⇒-intro

D ⇒ (A ∨ B)
⇒-intro (1)

(A ∧ B) ⇒ (D ⇒ (A ∨ B))

B ∧ A ∧-elim2
A

B ∧ A ∧-elim1
B
∧-intro

A ∧ B
⇒-elim

D ⇒ (A ∨ B)

;

B ∧ A ∧-elim2
A

B ∧ A ∧-elim1
B
∧-intro

A ∧ B ∧-elim1
A ∨-intro2

A ∨ B
⇒-intro

D ⇒ (A ∨ B)

;

B ∧ A ∧-elim2
A ∨-intro2

A ∨ B
⇒-intro

D ⇒ (A ∨ B)

;

[B ∧ A]1

∧-elim2
A ∨-intro2

A ∨ B
⇒-intro

D ⇒ (A ∨ B)
⇒-intro (1)

(B ∧ A) ⇒ (D ⇒ (A ∨ B))

A ∧ B ∧-elim2
B

A ∧ B ∧-elim1
A
∧-intro

B ∧ A
⇒-elim

D ⇒ (A ∨ B)

;

A ∧ B ∧-elim2
B

A ∧ B ∧-elim1
A
∧-intro

B ∧ A ∧-elim2
A ∨-intro2

A ∨ B
⇒-intro

D ⇒ (A ∨ B)

;

A ∧ B ∧-elim1
A ∨-intro2

A ∨ B
⇒-intro

D ⇒ (A ∨ B)
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Conclusions

The properties of β-reduction and η-expansion (or, more generally ≡βη) are
the minimal requirements that we demand for ‘defining’ a logical constant.

The advantage of working in a computational setting is that it is easier to
detect some essential proof-theoretical properties. An example is the
η-expansion: it is a property that naturally emerges in the characterization of
a consistent computational system, but that it is more difficult to justify in
purely logical terms.

Moreover, our approach constitutes an attempt to solve some basic questions
of a theory of meaning, such as the identity criterion for assertions and the
problem of the notion of synonymity.
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Future work

A comparison of our criterion with Dummett’s stability (Dummett [1991]) and
Negri/von Plato’s general inversion principle (Negri/von Plato [2001], Negri

[2002]).

For exemple, can we establish a hierarchy between these criteria (from the
weakest to the strongest)?
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