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Introduction

There is a broad consensus on the fact that visual inspection of the diagram is a 

primary form of ancient mathematical thought and reasoning1. 

Euclid's  plane  geometry2,  for  instance,  offers  several  examples  of  geometric 

reasoning contexts  in which diagrams have the standing to license inferences, 

substituting to the written text. 

Moreover the use of diagrams in Euclid's geometrical reasoning is rightly claimed 

1 Historians agree on the role of “seeing in the diagram” for the development of pre-euclidean 

mathematics. As Heath (1921) remarks: “Many propositions were doubtless first discovered by 

drawing all sorts of figures and lines in them, and observing apparent relations of equality (...) 

between  parts”.  On  the  other  side,  indirect  sources  indicate  that  the  first  mathematical 

discoveries  attributable  to  VI-Vth  century  mathematicians  dealt  with  properties  easily 

recognizable in diagrams, by reasoning, for instance, on symmetries  (Szabó (1978) ).
2 I agree with Marco Panza on his consideration of the notion of “Euclid's plane geometry”: “With 

‘Euclid’s plane geometry’ I mean plane geometry as it is expounded by Euclid, especially in the 

Elements  (but  the  Data  are  also  relevant  for  understanding  some  crucial  feature  or  this 

geometry),  and  was largely  practiced  up to  early  modern age.  This  should  be confounded 

neither with plane Euclidean geometry in general, nor with elementary synthetic plane geometry 

(...) The text of the Elements I refer to is that established by Heiberg (Euclid HM). This leaves 

open the possibility  of  confirming or  refuting some of  my statements based on philological 

evidences that Heiberg’s edition does not reflect”. In the following I will keep using that notion 

with the same sense. 



to be necessary for the deployment of the demonstration, because without them 

not only our knowledge of spatial  relations would be extremely poor, but many 

proofs would turn into non sequitur3. 

Things are not so straightforward, though. Even if perceptual cues have a primary 

role  in  Euclid's  plane  geometry,  and  texts  of  mathematical  works  are  almost 

always accompanied by figures (not only in the geometric and arithmetic books of 

the Elements), exclusively visual proofs are to be found nowhere in the Elements4. 

On the contrary,  geometric arguments are always  composed by  a verbal  part, 

which  we  may call  discursive  text,  which  interacts  with  the  diagram via  cross 

reference (letters or groups of letters to indicate points, lines... ), even when the 

claims to be proved are considered diagrammatically evident.    

It is the case of the proposition of El. I. 20: “in any triangle the sum of two sides is 

greater than the third”, which seems to have aroused, in antiquity, dispute around 

the necessity of the fully fledged proof that we meet in the Elements5,.

Indeed, it is hard to see why Euclid troubled himself with such a proof if in other 

loci of the Elements he would also allow himself  “to draw conclusion from diagram 

3   See for some interesting examples the discussion of R. Netz in (Chemla (2005)). 

4 In this, I  guess that pre-euclidean tradition must have been rather different.  The discussion 

between Socrates and the slave reported in Plato' Meno stands as evidence of a geometric 

practice in which: “verbal argument is only an accompaniment to diagrammatic manipulation 

and the diagram is both the source of conviction and the court of last resort in deciding the truth 

or falsity of a geometric assertion ” (in Mueller: 1969). However, according to Mueller, Meno's 

discussion is  not  really  in  conceptual  contrast  to  Euclidean reasoning style  (as argued,  for 

instance, by Szabò): “Euclid's formalism is much more like formalism in literature, which focuses 

on stylistic niceties, than like formalism in mathematics which is motivated by a philosophical 

conception of mathematics” (ibid.). 
5 So, for instance, Proclus claims that: “The Epicureans are wont to ridicule this theorem, saying it 

is evident even to an ass and needs no proof (...) that the present theorem is known to an ass 

they make out from the observation that, if straw is placed at one extremity of the sides, an ass 

in quest of provender will make his way along the one side, but not by way of the two others..

(§322, 1-2; 6-11). 



in an intuitive and unconstrained way”6. 

I will propose in my talk a twofold explanation. At first, in Euclidean plane geometry 

diagram-based inferences are subject to a set of constraints that relieve from the 

strictly controlled use of diagrams in the geometric practice. Because of these 

constraints, visual inspection of the diagram, despite its persuasiveness, cannot 

alone stand as a proof of the claim in I 20. 

My  second  point  is  that  proofs  enter  Euclidean  practice  to  serve  broader 

explanatory purposes than justificatory ones. Proof of I. 20, for instance, besides 

justifying the attribution of certain properties to given geometric entities,  plays a 

decisive role within a strategy for enhancing control on diagram appearance. 

Exact and co-exact diagrammatic conditions

I will now give a brief description of the set of constraints in action within Euclid's 

plane geometry. 

As  recent  works  have  shown7 in  Euclid's  plane  geometry  claims  can  be read 

directly in the diagram when they are based on those diagrammatic conditions 

insensitive to the effects of a range of continuous variations in diagram entries: the 

so-called co-exact diagrammatic conditions. Co-exact claims regard, for instance, 

part-whole  relations of  regions,  segments bounding regions,  lower  dimensional 

counterparts, and intersection of curves.

6 Mumma  J.  (2007).  On  the  same  vein,  O.  Veblen  recognized  that  evident  results  were 

nonetheless proved in the Elements, and Ken Manders agrees that: “the somewhat maligned 

requirement  that  this  diagrammatically  evident  fact  be proved  no doubt  reflects  a  relatively 

advanced theoretical foundational  development in Greek geometry,  but it  is that tradition so 

developed that we are to characterize” (Manders 1995: 8).
7  Manders (1995) , Manders (2007), Mumma (2007), Panza (2007).



On the contrary, claims are always assumed or established explicitly in the text 

when  they  are  based  on  those  diagrammatic  conditions  which  fail  upon  the 

slightest variation in the appearance of a diagram. These last conditions are called 

exact diagrammatic conditions, and exact claims include equality and inequalities 

between lines and angles (except coincidence), parallelism, rightness of angles, 

and proportionalities8.  

I  here  basically  share  Kenneth  Manders'  position  according  to  which  these 

strictures on inferential standards are directly related to the physical and cognitive 

capacities participants deploy in attaining uniformity for controlling production and 

reading of diagrams in a shared way. 

A little practice with diagramming can show how agreement on their appearance is 

easily attained in responding to several diagrammatic conditions: I suppose that 

any euclidean geometer, as agent endowed with normal cognitive capacities, has 

enough  cognitive  skills  to  agree  on  many  co  exact  conditions  indicated  in  a 

diagram, and have enough physical skills to produce diagrams that meet many co-

exact conditions. 

On the  contrary,  the  appearance of  a  diagram is  extremely sensitive  to  exact 

conditions: it is humanly impossible to trace segments equal one another within 

the least degree of accuracy,  perfectly straight or  parallel  lines, circles or right 

angles, so that disagreement on judging those features in a diagram is common 

and expected. 

Since written language can be employed successfully to express exact properties, 

Euclidean  geometers  can  invoke  textual  resources  to  supply  weakness  in 

appearance control: in the Elements the construction of straight lines and circles is 

postulated, lines  are said  to be parallel  or perpendicular in a given geometric 

8  See Manders (2007): 3.



context,  equality  and  inequality  between  distant  elements  in  the  diagram  are 

usually obtained via prior entries in the text9.  

Further problems with appearance control

However, in Euclid's plane geometry control of diagram appearance does not limit 

itself to charge the text with responsibility for exact claims.  

Diagrams  are  compositional  objects10,  and  it  is  common  that  spurious  sub-

diagrams just  “pop up” at any step of a geometric construction. It is only to trace a 

line inside a triangle and two new triangles appear without their being recorded in 

the text, or to cut two circles and their intersection point “happens” in the diagram. 

It has been rightly remarked11 that auxiliary constructions, being an “essential” part 

of geometric proof always introduce new individuals with respect to the beginning 

and the end of a geometric argument.

However, to admit that something “just happens” when we draw a straight line or 

cross two circles it is to admit a break in control “along a broad front”12. In fact, as 

constructions pile up heuristic uncertainty about their outcome will probably grow”, 

leading to the possibility of multiple and dissimilar results under the development 

of a given proof13.

We look  then  for  alternative  measures  that  might  have  been  available  within 

9 Manders (1995): 13.
10 Panza (2007): 21.
11 Hintikka (1975). Von Plato, Maenpaa (1990).
12 Manders (1995): 34.
13 Which must have been a felt as threat in ancient geometrical pratice, if I interpret well Plato´s 

words in Cratylus: “geometric diagrams... often have a slight and invisible flaw in the first part of 

the process,  and are  consistently  mistaken in  the  long deductions  that  follow.  Plato,  436D 

(Jowett tr.), in Manders (1995): 6.



Euclid's plane geometry in order to  overcome what might have been felt as an 

“impotence” or failure in control. 

To provide critical scrutiny for variant diagrams, or, as it may be said, to “probe”14 

them seems to be one of the most promising means for challenging control within 

ancient geometric practice. 

In the following I will  try to elaborate, according with the guidelines given by K. 

Manders in his (1995), a local strategy for probing diagram alternatives in order to 

show how control on spurious sub-diagrams15 can be attained.

I called the strategy local because  it applies only to the emergence of spurious 

triangles under a geometric construction, but it is not of small importance: a little 

practice  with  diagram-drawing  shows  that  they  emerge  “easily”  from  given 

configurations of lines16, so I guess that challenging this situation would represent, 

alone, a great enhancement in control. 

An example of Control on diagram appearance based on testing diagram 

alternatives (probing)

It is a fact of intuition that if we take a triangle and if we stretch its base preserving 

the length of the other sides, at some point the triangle disappears or “splits up”. 

This may suggest that the appearance of a triangle in a configuration of lines is 

tied with metric conditions concerning the length of its sides, but still we have to 

clarify  how these  metric  conditions  govern  the  production  of  such  a  bounded 

14 Manders (1995): 29.
15 I distinguish “construction” from “production”, taking the second term to refer to non regulated” 

construction of a figure, as in the cases exemplified above.
16 Euclid I: 1,  5,  6,  7, 9,  10,  16, 18, 19, 20,  21,  33, 34,  35,  40, 41, 42, 43, 44, 45, 47.



region.

I may start by moving two segments around the endpoints of a given one17,  to 

record circumstances in which  a triangle appears,  and subsequently try to  get 

them to fail. 

We call the given segment AB and the moving ones AM and BN. We notice that if 

we decide to circle the moving segments, we will soon arrive at three situations 

distinct  from a  co-exact  point  of  view:  in  one  case  the  two  circling  segments 

intersect  the  given  initial  segment  in  one  recognizable  point,  otherwise  they 

intersect it in two points M and N, such that either point M is between A and N, or 

point N is between A and M.

If we consider the traced circles instead of the circling segments, we notice that 

three cases can occur: circle with ray AM either touches externally circle with ray 

BN, or circle with ray AM is secant to circle with ray BN, or finally, circle AM does 

not intersect circle with ray BN18.

Now, when the circles cross each other a triangle (or, more exactly, a couple of 

them) can be constructed by joining the intersection points with the extremities A 

and B. In the other two cases, no possibility to connect the endpoints is given. We 

have thus come up with the following result: 

if circles with rays AM and BN have an intersection point (so that point N is 

between A and M), and their centers A and B are joined to it by “straight” 

lines, a  triangle is produced. 

The clear  fact  that  this  geometric  context  does not  exhaust  all  the imaginable 

contexts in which a triangle can “pop up” shows that it is a sufficient, but not a 

17 K. Manders (1995): 34.
18 I omit here all the problems concerning the existence of the intersection point, to which neither 

ancients readers were not insensitive.



necessary condition for producing a triangle. 

Secondly, we notice that the first condition, concerning the pointwise circle-circle 

intersection, is indeed a co-exact diagrammatic property, and that the second one 

is a diagram entry not controlled propositionally, that is the reason of my “ ” (in 

other terms, lines need not be drawn perfectly straight or equal to one another to 

produce a clearly readable diagram).  

We have enough elements,  now, to try and ask the question about the metric 

relationships that hold between the three sides of the triangle thus produced.

Inspection of the diagram shows that when circles do cross each other in exactly 

one point not on AB (taking just the region of the plane upside AB), then they 

cross  the given segment AB on two points, M and N, such that N is between A 

and M. 

In  euclidean  plane  geometry,  judgments  of  equality  and  inequality  among 

segments can be made directly on the diagram when a segment is a proper part of 

another  or  two  segments  are  coincident  (co-exact  conditions).  Both  co-exact 

situations are obtained in our diagram, so that we can conclude that AN, NM and 

MB taken together are equal to AB. From this, we can infer via a simple reasoning 

that AM and BN taken together exceed AB19. Thus, we can get the following co-

exact result: 

(a) if circles with rays AM and BN do cross each other in exactly one point 

(and thus a triangle can be produced), AM and BN taken together are greater 

than the segment AB.  

19 This reasoning does not presuppose proper geometric knowledge. It seems to me that it has 

rather the same status of that  kind of the  “common knowledge” listed by Euclid under the 

banner of “ common notions”.



On the contrary, the following statement, which can be considered the converse of 

the preceding one: 

(b) given a segment AB and two circles with rays AM and BN, if the sum of 

AM and BN exceeds AB, then the circles with rays AM and BN do intersect in 

exactly one point. 

is no more based on co-exact diagrammatic conditions. In fact we can get it to fail 

imagining that circle BN has been drawn so as to cross circle AM in more than one 

point. That circle BN is in itself co-exactly equivalent to another circle B'N' which 

respects  the  pointwise  circle-circle  condition,  but  in  the  overall  diagrammatic 

context  it  gives  rise  to  a  utterly  different  geometric  situation,  given  the  same 

disposition of the points on AB. In order to trace circles that always intersect in one 

point only, it is required that rays AM and BN hold the same length when circling 

around, and this last condition is an  exact one. 

According to Euclidean standards, we need a verbal argument in order to prove 

this claim .  

This is done in the first book of the Elements, where  with slight variations in the 

terminology,  proposition  I.  20  subsumes the  preceding  claim  (b).  The latter  is 

indeed explicitly proved in the Euclidean text,  as a necessary condition for the 

regulated construction of a triangle given its three sides (El. I. 22). 

We could expect that if probing had ever been an historical practice, Euclid's proof 

of claim (b) should in principle recover our preceding steps.

However, the peculiar procedure adopted by Euclid is utterly different20.

20“  For let ABC  be a triangle; I say that in the triangle ABC two sides taken together in any

manner are greater than the remaining one, namely 

BA, AC  greater than BC,

AB, BC greater than AC,

BC, CA greater than AB.



But this fact may be motivated by meta-theoretical reasons. Reasons of deductive 

orderings, for instance, could have forced the author to place our proposition at a 

particular point in the structure of the Elements, limiting the available resources to 

those claims already proved in the text.

What's more, as an historical practice probing can only conjecturally be ascribed 

to Euclid's plane geometry, where we can find, at most, responses  to it. So, for 

instance,  the  diorism of  I.  22  can  also  be  seen  (with  Proclus)  as  having  an 

objection-refuting  role21,  thus  excluding  purportedly  all  the  variant  diagrams 

examined before. 

Conclusions

I will  return, briefly, to my initial question: how can we explain that Euclid gives 

proofs even when we see clearly what's “going on” in the diagram?

Our  preceding  discussion  shows  that,  even  if  we  admitted  that  the  non 

propositional acquaintance with the diagram generates a reliable belief state about 

the assertion stated in I. 20, it does not automatically license a proof of the claim. 

As it was shown, if we want to prove the claim in I 20 we must invoke a verbal 

argument, because the claim rests on exact diagrammatic property. 

And these constraints on diagrammatic properties are, as far as we know, in force 

not only within proposition I 20, but they represent a standard of practice within all 

For let  BA be drawn through the point D, let  DA be made equal to CA, and let DC be joined. Then, 

since DA is equal to AC, the angle ADC is also equal to the angle ACD; [I. 5] therefore the angle 

BCD is greater than the angle ADC. [C.N. 5] And, since DCB is a triangle having the angle BCD 

greater  than  the  angle  BDC,  and  the  greater  angle  is  subtended by  the  greater  side,  [I.  19] 

therefore DB is greater than BC. Similarly we can prove that AB, BC are also greater than CA, and 

BC, CA than AB. Therefore etc.Q. E. D.”

21 Proclus: § 330.



geometric books of the Elements.

To return to the second part of the question, once our claim is demonstrated, any 

participant to Euclid's plane geometry by accepting a number of discursive results 

contained in propositions I. 1 -19 is endowed with adequate resources to predict 

whether a given configuration of lines  will realize the necessary (exact) conditions 

in order to produce a triangle. 

Since the practice of testing diagram alternatives gives the sufficient (co-exact) 

conditions too, it is reasonable to suppose that  in the impossibility of stating all 

construction  postulates  needed  for  Euclidean  plane  geometry22,  a  significant 

enhancement on controlling the emergence of a certain class of spurious sub-

diagrams has been nevertheless acquired. 

22 This  is,  according  to  Von  Plato  and  Maenpaa,  the  very  “problem  of  synthetic  geometry”: 

“Euclid ...  takes for granted that the two circles have an intersection point there is no easy 

remedy to this situation. In fact, Euclid's failure to state all the construciton postulates needed 

for Euclidean geometry was great serendipity. For no one has been able to state them, in the 

more than two thousand years after Euclid.”. Von Plato, Maenpaa (1990).
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